Materiales de Construcción, Vol 68, No 331 (2018)

Preparation and characterization of protective self-cleaning TiO2/kaolin composite coating


https://doi.org/10.3989/mc.2018.08517

V. Jovanov
Ss.Cyril and Methodius, University in Skopje, Faculty of Technology and Metallurgy, Macedonia, the former Yugoslav Republic of
orcid http://orcid.org/0000-0001-7734-0757

V. Zečević
University of Novi Sad, Faculty of Technology, Serbia
orcid http://orcid.org/0000-0002-9825-4687

T. Vulić
University of Novi Sad, Faculty of Technology, Serbia
orcid http://orcid.org/0000-0001-9431-2846

J. Ranogajec
University of Novi Sad, Faculty of Technology, Serbia
orcid http://orcid.org/0000-0002-9831-2998

E. Fidanchevska
Ss.Cyril and Methodius, University in Skopje, Faculty of Technology and Metallurgy, Macedonia, the former Yugoslav Republic of
orcid http://orcid.org/0000-0003-2919-5916

Abstract


The application of self-cleaning coatings presents one of the most effective ways to protect the surfaces of the building materials. The effect of TiO2/kaolin based coatings applied to three types of substrates: non-porous, porous and highly porous, was investigated. Mechanical activation was applied for the impregnation of the active TiO2 component (in content of 3 and 10 wt. %) into the kaolin support. Surface properties (roughness, hydrophilicity and micro-hardness) and functional properties (photocatalytic activity and self-cleaning efficiency) were studied in order to define the optimal formulation of the applied coatings. The effect of the photocatalytic behavior of the coated substrates in terms of self-cleaning ability was assessed by the photodegradation of Rhodamine B, performed before and after durability tests. The results obtained in this paper showed that photocatalytic activity of the TiO2/kaolin composite coating generally depends on the procedure of TiO2 impregnation into the kaolin clay and the loaded TiO2 content.

Keywords


Composite; Durability; Characterization; Microstructure; Particles size distribution; Scanning Electron Microscopy (SEM); X-ray diffraction (XRD)

Full Text:


HTML PDF XML

References


Chen, J.; Poon, C.S. (2009) Photocatalytic construction and building materials: from fundamentals to applications. Build. Environ. 44 (9), 1899-1906. https://doi.org/10.1016/j.buildenv.2009.01.002

Ducman, V.; Petrovi_, V.; _kapin, D.S. (2013) Photo-catalytic efficiency of laboratory made and commercially available ceramic building products. Ceram. Int. 39 (3), 2981-2987. https://doi.org/10.1016/j.ceramint.2012.09.075

Goffredo, G.B.; Munafò, P. (2015) Preservation of historical stone surfaces by TiO2 nanocoatings. Coatings. 5 (2), 222-231. https://doi.org/10.3390/coatings5020222

Sciancalepore, C. F.; Bondioli, F. (2015) Durability of SiO2-TiO2 photocatalytic coatings on Ceramic Tiles. Int. J. Appl. Ceram. Technol. 12 (3), 679-684. https://doi.org/10.1111/ijac.12240

Sciancalepore, C.; Manfredini, T.; Bondioli, F. (2014) Antibacterial and self-cleaning coatings for silicate seramics: A review. Advances in Science and Technology, 92, 90-99. https://doi.org/10.4028/www.scientific.net/AST.92.90

Pal, S.; Contaldi, V.; Liccilulli, A.; Marzo, F. (2016) Self-cleaning mineral paint for application in architectural heritage. Coatings. 6 (4), 48. https://doi.org/10.3390/coatings6040048

Taurino, R.; Barbieri, L.; Bondioli, F. (2016) Surface properties of new green building material after TiO2-SiO2 coatings deposition. Ceram. Int. 42 (4), 4866-4874. https://doi.org/10.1016/j.ceramint.2015.12.002

Ranogajec, J.; Radeka, M.; Ba_kali_, Z.; _kapin, A.; Zori_, D. (2010) Photocatalytic and superhydrophilic phenomena of TiO2 coated clay roofing tiles. Chem. Ind. Chem. Eng. Q. 16 (2), 117-126. https://doi.org/10.2298/CICEQ091214018R

Zhang, Y.H.; Gan, H.; Zhang, G. (2011) A novel mixed-phase TiO2/kaolinite composites and their photocatalytic activity for degradation of organic contaminants. Chem. Eng. J. 172 (2-3), 936-943. https://doi.org/10.1016/j.cej.2011.07.005

Warheit, D.B.; Hoke, R.A.; Finlay, C.; Donner, E.M.; Reed, K.L.; Sayes, C.M. (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett, 2007. 171(3), 99-110. https://doi.org/10.1016/j.toxlet.2007.04.008 PMid:17566673

Yu, Y. (2004) Preparation of nanocristalline TiO2-coated coal fly ash and effect of iron oxides in coal fly ash on photocatalytic activity. Powder Technol. 146 (1-2), 154-159. https://doi.org/10.1016/j.powtec.2004.06.006

Yahiro, H.; Miyamoto, T.; Watanabe, N.; Yamaura, H. (2007) Photocatalytic partial oxidation of a-metylstyrene over TiO2 suported on zeolites, Catal. Today, 120 (2), 158-162. https://doi.org/10.1016/j.cattod.2006.07.039

Puzenat, E.; Puerre, P. (2003) Studying TiO2 coating on silica-covered glass by O2 photosorption measurements and FTIR-ATR spectrometry: Correlation with the self-cleaning efficacy, J. Photochem. Photobiol. A: Chemistry, 160 (1-2), 127-133. https://doi.org/10.1016/S1010-6030(03)00231-4

Rebilasová. S.; Mamulová. K.K.; Mat_jka. V.; Tokarsky_. J.; Kukutschová. J.; Neuwirthová. L.; _APKOVÁ. P. (2010) Preparation, characterization and comparison of composites: kaolinite/TiO2 and quartz/TiO2.NANOCON'10 International conference, Czech Republic.

Vulic,T.; Hadnadjev-Kostic, M.; Rudic, O.; Radeka, M.; Marinkovic- Neducin, R.; Ranogajec, J. (2013) Improvement of cement-based mortars by application of photocatalytic active Ti-Zn-Al nanocomposites, Cem. Concr. Compos. 36, 121-127. https://doi.org/10.1016/j.cemconcomp.2012.07.005

Keller, N.; Rebmann, G.; Barraud, E.; Zahraa, O.; Keller, V. (2005) Macroscopic carbon nanofibers for use as photocatalydt support, Catal. Today 101, 323-329. https://doi.org/10.1016/j.cattod.2005.03.021

Portela, R.; Sánchez, B.; Coronado, J.M.; Candal, R.; Suárez, S. (2007) Selection of TiO2-support: UV-transparent alternatives and long-term use limitations for H2S removal, Catal. Today 129 (1-20), 223-230. https://doi.org/10.1016/j.cattod.2007.08.005

Rudic, O.; Rajnovic, D.; Cjepa, D.; Vucetic, S.; Ranogajec, J. (2015) Investigation of the durability of porous mineral substrates with newly designed TiO2-LDH coating. Ceram. Int. 41 (8), 9779-9792. https://doi.org/10.1016/j.ceramint.2015.04.050

Rudic, O.; Ranogajec, J.; Vulic, T.; Vucetic, S.; Cjepa, D.; Lazar, D. (2014) Photo-induced properties of TiO2/ZnAl layered double hydroxide coating onto porous mineral substrates. Ceram. Int. 40 (7), Part A 9445-9455. https://doi.org/10.1016/j.ceramint.2014.02.017

Chong, M.N.; Vimonses, V.; Lei, S.; Jin, B.; Chow, C.; Saint, C. (2009) Synthesis and characterisation of novel titania impregnated kaolinite nano-photocatalyst. Microporous Mesoporous Mater. 117 (1-2), 233-242. https://doi.org/10.1016/j.micromeso.2008.06.039

Yuan, L.; Huang, D.; Guo, D.; Yang, Q.; Yu, J. (2011) TiO2/montmorillonite nanocomposite for removal of organic pollutant. Appl. Clay Sci. 53 (2), 272-278. https://doi.org/10.1016/j.clay.2011.03.013

Szczepanik, B. (2017) Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: A review. Appl. Clay Sci. 141, 227-239. https://doi.org/10.1016/j.clay.2017.02.029

Fujishima, A.; Hashimoto, K.; Watanabe, T. (1999) TiO2 photocatalysis fundamentals and applications, Tokyo Bkc (1999).

Ma, Y.; Qiu, J.B.; Cao, Y.A.; Guan, Z.S.; Yao, J.N. (2001) Photocatalytic activity of TiO2 films grown on different substrates. Chemosphere - Oxford 44 (5), 1087-1092.

Yu, J.; Zhao, X. (2000) Effect of substrates on the photocatalytic activity of nanometer TiO2 thin films. Mater. Res. Bull. 35 (8), 1293-1301. https://doi.org/10.1016/S0025-5408(00)00327-5

Fidanchevska, E.; Jovanov, V.; Angjusheva, B.; Srebrenkoska, V. (2014) Composites based on fly ash and clay, The 27-th Conference of the Israel Nuclear Societies, February, 11-13, Dead Sea Israel

SRPS U.M8.300:1985, Determination of the Capillary Water Absorption of Building Material and Coatings, 1985.

Jovanov, V.; Rudic, O.; Ranogajec, J.; Fidanchevska, E. (2017) Synthesis of nanocompositecoating based on TiO2/ZnAl layer double hydroxides, Materiales de Construcción 67 (325), 112-120. https://doi.org/10.3989/mc.2017.07215

UNI 11259:2008. Determination of the photocatalytic activity of hydraulic binders - Dodammina test method. Ente nazionale italiano di unificazione; 2008

Cassar, L.; Beeldens, A.; Pimpinelli, N.; Guerrini, G.L. (2007) Photocatalysis of cementous materials. Proceedings pro055: InternationalRILEM symposium on photocatalysis, environment and construction materials - TDP 2007, Edited by: Biglioni, P., Cassa, L., RILEM Publications SARI. 131-45.




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es