Materiales de Construcción, Vol 68, No 331 (2018)

Preparation and characterization of protective self-cleaning TiO2/kaolin composite coating

V. Jovanov
Ss.Cyril and Methodius, University in Skopje, Faculty of Technology and Metallurgy, Macedonia, the former Yugoslav Republic of

V. Zečević
University of Novi Sad, Faculty of Technology, Serbia

T. Vulić
University of Novi Sad, Faculty of Technology, Serbia

J. Ranogajec
University of Novi Sad, Faculty of Technology, Serbia

E. Fidanchevska
Ss.Cyril and Methodius, University in Skopje, Faculty of Technology and Metallurgy, Macedonia, the former Yugoslav Republic of


The application of self-cleaning coatings presents one of the most effective ways to protect the surfaces of the building materials. The effect of TiO2/kaolin based coatings applied to three types of substrates: non-porous, porous and highly porous, was investigated. Mechanical activation was applied for the impregnation of the active TiO2 component (in content of 3 and 10 wt. %) into the kaolin support. Surface properties (roughness, hydrophilicity and micro-hardness) and functional properties (photocatalytic activity and self-cleaning efficiency) were studied in order to define the optimal formulation of the applied coatings. The effect of the photocatalytic behavior of the coated substrates in terms of self-cleaning ability was assessed by the photodegradation of Rhodamine B, performed before and after durability tests. The results obtained in this paper showed that photocatalytic activity of the TiO2/kaolin composite coating generally depends on the procedure of TiO2 impregnation into the kaolin clay and the loaded TiO2 content.


Composite; Durability; Characterization; Microstructure; Particles size distribution; Scanning Electron Microscopy (SEM); X-ray diffraction (XRD)

Full Text:



Chen, J.; Poon, C.S. (2009) Photocatalytic construction and building materials: from fundamentals to applications. Build. Environ. 44 (9), 1899-1906.

Ducman, V.; Petrovi_, V.; _kapin, D.S. (2013) Photo-catalytic efficiency of laboratory made and commercially available ceramic building products. Ceram. Int. 39 (3), 2981-2987.

Goffredo, G.B.; Munafò, P. (2015) Preservation of historical stone surfaces by TiO2 nanocoatings. Coatings. 5 (2), 222-231.

Sciancalepore, C. F.; Bondioli, F. (2015) Durability of SiO2-TiO2 photocatalytic coatings on Ceramic Tiles. Int. J. Appl. Ceram. Technol. 12 (3), 679-684.

Sciancalepore, C.; Manfredini, T.; Bondioli, F. (2014) Antibacterial and self-cleaning coatings for silicate seramics: A review. Advances in Science and Technology, 92, 90-99.

Pal, S.; Contaldi, V.; Liccilulli, A.; Marzo, F. (2016) Self-cleaning mineral paint for application in architectural heritage. Coatings. 6 (4), 48.

Taurino, R.; Barbieri, L.; Bondioli, F. (2016) Surface properties of new green building material after TiO2-SiO2 coatings deposition. Ceram. Int. 42 (4), 4866-4874.

Ranogajec, J.; Radeka, M.; Ba_kali_, Z.; _kapin, A.; Zori_, D. (2010) Photocatalytic and superhydrophilic phenomena of TiO2 coated clay roofing tiles. Chem. Ind. Chem. Eng. Q. 16 (2), 117-126.

Zhang, Y.H.; Gan, H.; Zhang, G. (2011) A novel mixed-phase TiO2/kaolinite composites and their photocatalytic activity for degradation of organic contaminants. Chem. Eng. J. 172 (2-3), 936-943.

Warheit, D.B.; Hoke, R.A.; Finlay, C.; Donner, E.M.; Reed, K.L.; Sayes, C.M. (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett, 2007. 171(3), 99-110. PMid:17566673

Yu, Y. (2004) Preparation of nanocristalline TiO2-coated coal fly ash and effect of iron oxides in coal fly ash on photocatalytic activity. Powder Technol. 146 (1-2), 154-159.

Yahiro, H.; Miyamoto, T.; Watanabe, N.; Yamaura, H. (2007) Photocatalytic partial oxidation of a-metylstyrene over TiO2 suported on zeolites, Catal. Today, 120 (2), 158-162.

Puzenat, E.; Puerre, P. (2003) Studying TiO2 coating on silica-covered glass by O2 photosorption measurements and FTIR-ATR spectrometry: Correlation with the self-cleaning efficacy, J. Photochem. Photobiol. A: Chemistry, 160 (1-2), 127-133.

Rebilasová. S.; Mamulová. K.K.; Mat_jka. V.; Tokarsky_. J.; Kukutschová. J.; Neuwirthová. L.; _APKOVÁ. P. (2010) Preparation, characterization and comparison of composites: kaolinite/TiO2 and quartz/TiO2.NANOCON'10 International conference, Czech Republic.

Vulic,T.; Hadnadjev-Kostic, M.; Rudic, O.; Radeka, M.; Marinkovic- Neducin, R.; Ranogajec, J. (2013) Improvement of cement-based mortars by application of photocatalytic active Ti-Zn-Al nanocomposites, Cem. Concr. Compos. 36, 121-127.

Keller, N.; Rebmann, G.; Barraud, E.; Zahraa, O.; Keller, V. (2005) Macroscopic carbon nanofibers for use as photocatalydt support, Catal. Today 101, 323-329.

Portela, R.; Sánchez, B.; Coronado, J.M.; Candal, R.; Suárez, S. (2007) Selection of TiO2-support: UV-transparent alternatives and long-term use limitations for H2S removal, Catal. Today 129 (1-20), 223-230.

Rudic, O.; Rajnovic, D.; Cjepa, D.; Vucetic, S.; Ranogajec, J. (2015) Investigation of the durability of porous mineral substrates with newly designed TiO2-LDH coating. Ceram. Int. 41 (8), 9779-9792.

Rudic, O.; Ranogajec, J.; Vulic, T.; Vucetic, S.; Cjepa, D.; Lazar, D. (2014) Photo-induced properties of TiO2/ZnAl layered double hydroxide coating onto porous mineral substrates. Ceram. Int. 40 (7), Part A 9445-9455.

Chong, M.N.; Vimonses, V.; Lei, S.; Jin, B.; Chow, C.; Saint, C. (2009) Synthesis and characterisation of novel titania impregnated kaolinite nano-photocatalyst. Microporous Mesoporous Mater. 117 (1-2), 233-242.

Yuan, L.; Huang, D.; Guo, D.; Yang, Q.; Yu, J. (2011) TiO2/montmorillonite nanocomposite for removal of organic pollutant. Appl. Clay Sci. 53 (2), 272-278.

Szczepanik, B. (2017) Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: A review. Appl. Clay Sci. 141, 227-239.

Fujishima, A.; Hashimoto, K.; Watanabe, T. (1999) TiO2 photocatalysis fundamentals and applications, Tokyo Bkc (1999).

Ma, Y.; Qiu, J.B.; Cao, Y.A.; Guan, Z.S.; Yao, J.N. (2001) Photocatalytic activity of TiO2 films grown on different substrates. Chemosphere - Oxford 44 (5), 1087-1092.

Yu, J.; Zhao, X. (2000) Effect of substrates on the photocatalytic activity of nanometer TiO2 thin films. Mater. Res. Bull. 35 (8), 1293-1301.

Fidanchevska, E.; Jovanov, V.; Angjusheva, B.; Srebrenkoska, V. (2014) Composites based on fly ash and clay, The 27-th Conference of the Israel Nuclear Societies, February, 11-13, Dead Sea Israel

SRPS U.M8.300:1985, Determination of the Capillary Water Absorption of Building Material and Coatings, 1985.

Jovanov, V.; Rudic, O.; Ranogajec, J.; Fidanchevska, E. (2017) Synthesis of nanocompositecoating based on TiO2/ZnAl layer double hydroxides, Materiales de Construcción 67 (325), 112-120.

UNI 11259:2008. Determination of the photocatalytic activity of hydraulic binders - Dodammina test method. Ente nazionale italiano di unificazione; 2008

Cassar, L.; Beeldens, A.; Pimpinelli, N.; Guerrini, G.L. (2007) Photocatalysis of cementous materials. Proceedings pro055: InternationalRILEM symposium on photocatalysis, environment and construction materials - TDP 2007, Edited by: Biglioni, P., Cassa, L., RILEM Publications SARI. 131-45.

Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support