Materiales de Construcción, Vol 69, No 333 (2019)

Use of fly ash and phosphogypsum for the synthesis of belite-sulfoaluminate clinker


https://doi.org/10.3989/mc.2019.11617

S. Kramar
Slovenian National Building and Civil Engineering Institute, Slovenia
orcid http://orcid.org/0000-0003-0483-9623

L. Žibret
Slovenian National Building and Civil Engineering Institute, Slovenia
orcid http://orcid.org/0000-0002-0132-0896

E. Fidanchevska
Slovenian National Building and Civil Engineering Institute, Slovenia
orcid http://orcid.org/0000-0003-2919-5916

V. Jovanov
Ss. Cyril and Methodius University in Skopje, Faculty of Technology and Metallurgy, Macedonia, the former Yugoslav Republic of
orcid http://orcid.org/0000-0001-7734-0757

B. Angjusheva
Ss. Cyril and Methodius University in Skopje, Faculty of Technology and Metallurgy, Macedonia, the former Yugoslav Republic of
orcid http://orcid.org/0000-0001-6661-1777

V. Ducman
Slovenian National Building and Civil Engineering Institute, Slovenia
orcid http://orcid.org/0000-0002-6430-3305

Abstract


Fly ash and phosphogypsum were used as Naturally Occurring Radioactive Materials (NORM) by-products for the synthesis of belite-sulfoaluminate clinkers. The influence of raw mixture composition and firing temperature was investigated. Clinkers and cements were examined by X-ray powder diffraction and scanning electron microscopy with energy dispersive X-ray spectroscopy. The compressive strength of the cements was determined after 28 days. Clinker phases identified included ye’elimite, ß-phase of belite, ternesite and gehlenite, while the main hydration product of the cement pastes was ettringite. The results showed that belite-sulfoaluminate cements can be fabricated with a compressive strength of 45.9 N/mm2 by firing the raw mixture (70 wt.% marl, 10 wt.% bauxite and 20 wt.% phosphogypsum) at a temperature of 1320°C/1h.

Keywords


Clinker; Microstructure; Fly ash; Gypsum; Calcium sulphoaluminate

Full Text:


HTML PDF XML

References


Glasser, F.P.; Zhang, L. (2001) High-performance cement matrices based on calcium sulfoaluminate-belite compositions. Cem. Concr. Res. 31, 1881–1886.

Cuberos, A.J.M; De La Torre, A.G.; Alverez-Pinazo, G.; Martin-Sedeño, M.C.; Schollbach, K.; Pollman, H.; Aranda, M.A.G. (2010) Active Iron-Rich Belite Sulfoaluminate Cements: Clinkering and Hydration. Environ. Sci. Technol. 44, 6855–6862.

Chen, I.A.; Juenger, M.C.G. (2011) Synthesis and hydration of calcium sulfoaluminate-belite cements with varied phase composition. J. Mater. Sci. 46, 2568–2577.

Palou, M.; Majling, J.; Doval, M.; Kozankova, J.; Mojumdar, S.C. (2005) Formation and Stability of Crystallohydrates in the Non-equilibrium System During Hydration of SAB Cements. Ceramics-Silicáty 49 [4], 230–236.

Striga?, J.; Palou, M.T.; Kri?tin, J.; Majling, J. (2000) Morphology and Chemical Composition of Minerals Inside the Phase Assemblage C-C2S-C4A3S-C4AF-CS Relevant to Sulphoaluminate Belite Cements. Ceramics- Silicáty 44 [1], 26–34.

Roy, D.M.; Silsbee, M.R.; Xie, Z. (1999) Influences of Surplus SO3 in FBC Ash on Formation of Belite-Rich Sulfoaluminate Clinkers, International Ash Utilization Symposium, Center for Applied Energy Research, University of Kentucky, paper#30.

Shen, Y.; Qian, J.; Huang, Y.; Yang, D. (2015) Synthesis of belite sulfoaluminate-ternesite cements with phosphogypsum. Cement Concr. Compos. 63, 67–75.

Ukrainczyk, N.; Frankovi? Mihelj, N.; ?ipu?i?, J. (2013) Calcium Sulfoaliminate Eco-Cement from Industrial Waste. Chem. Biochem. Eng.Q. 27 [1], 83–93. http://hrcak. srce.hr/99441.

El-Alfi, E.A.; Gado, R.A. (2016) Preparation of calcium sulfoaluminate-belite cement from marble sludge waste. Constr. Build. Mater. 113, 764–772.

Rungchet, A.; Chindraprasirt, P.; Wansom, S.; Pimraksa, K. (2016) Hydrothermal synthesis of calcium sulfoaluminate-belite cement from industrial waste materials. J. Clean. Prod. 115, 273–283.

Wang, W.; Wang, X.; Zhu, J.; Wang, P.; Ma, C. (2013) Experimental Investigation and Modeling of Sulfoaluminate Cement Preparation Using Desulfurization Gypsum and Red Mud. Ind. Eng. Chem. Res. 52, 1261– 1266.

Jewell, R.B.; Rathbone, R.F.; Duvallet, T.Y.; Robi, T.L.; Mahboub, K.C. (2015) Fabrication and Testing of Low- Energy Calcium Sulfoaluminate-Belite Cements that Utilize Circulating Fluidized Bed Combustion By-Products. Coal Combustion and Gasification Products Journal. 7, 9–18.

Arjunan, P.; Silsbee, R.M.; Roy, D.M. (1999) Sulfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products. Cem. Concr. Res. 29, 1305–1311.

Ma, B.; Li, X.; Mao, Y.; Shen, X. (2013) Synthesis and characterization of high belite sulfoaluminate cement through rich alumina fly ash and desulfurization gypsum. Ceramics – Silikáty. 57 [1], 7–13.

Gallardo, M.; Almanza, J.M.; Cortés, D.A.; Escobedo, J.C.; Escalante-García, J.I. (2014) Synthesis and mechanical properties of a calcium sulphoaluminate cement made of industrial wastes. Mater. Construc. 64 [315], 1–8.

Ren, C.; Wang, W.; Li, G. (2017) Preparation of high-performance cementitious materials from industrial solid waste. Constr. Build. Mater. 152, 39–47.

Álvarez-Pinazo, G.; Cuesta, A.; García-Maté, M.; Santacruz, I.; Losilla, E.R.; Dela Torre, A.G.; León- Reina, L.; Aranda, M.A.G. (2012) Rietveld quantitative phase analysis of yeelimite-containing cements. Cem. Concr. Res. 42 [7], 960–971.

Martín-Sedeño, M.C.; Cuberos, A.J.M.; De la Torre, Á.G.; Álvarez-Pinazo, G.; Ordónez, L.M.; Gateshki, M.; Aranda, M.A.G. (2010) Aluminum-rich belite sulfoaluminate cements: Clinkering and early age hydration. Cem. Concr. Res. 40, 359–369.

Beretka, J.; de Vito, B.; Santoro, L.; Sherman, N.; Valenti, G.L. (1993) Utilisation of industrial wastes and by-products for the synthesis of special cements. Resour. Conserv. Recy. 9, 179–190.

Bullerjahn, F.; Schmitt, D.; Haha, M.B. (2014) Effect of raw mix design and clinkering process on the formation and mineralogical composition of (ternesite) belite calcium sulphoaluminate ferrite clinker. Cem. Concr. Res. 59, 87–95.

Bullerjahn, F.; Zajac, M.; Ben Haha, M. (2014) CSA raw mix design: effect on clinker formation and reactivity. Mater. Struct. 48 [12], 3895–3911.

Hanein, T.; Galanb, I.; Glasser, F.P.; Skalamprinos, S.; Elhoweris, A.; Imbabi, M.S.; Bannerman, M.N. (2017) Stability of ternesite and the production at scale of ternesite-based clinkers. Cem. Concr. Res. 98, 91–100.

Kasselouri, V.; Tsakiridis, P. (1995) A study on the hydration products of a non-expensive sulfoaluminate cement. Cem. Concr. Res. 25 [8], 1726–1736.

Chen, I.A.; Juenger, M.C.G. (2012) Incorporation of coal combustion residuals into calcium sulfoaluminate-belite cement clinkers. Cement Concr. Compos. 34, 893–902.

lvarez-Pinazo, G.; Santacruz, I.; Leon-Reina, L.; Aranda, M.A.G.; De la Torre, A.G. (2013) Hydration Reactions and Mechanical Strength Developments of IronRich Sulfobelite Eco-cements. Ind. Eng. Chem. Res. 52, 16606– 16614.

J. Labrincha, F. Puertas, W. Schroeyers, K. Kovler, Y. Pontikes, C. Nuccetelli, P. Krivenko, O. Kovalchuk, O. Petropavlovsky, M. Komljenovic, E. Fidanchevska, R. Wiegers, E. Volceanov, E. Gunay, M.A. Sanjuan, V. Ducman, B. Angjusheva, D. Bajare, T. Kovacs, G. Bator, S. Schreurs, J. Aguiar, J.L. Povis (2017) From NORM by-products to building materials, In Schroeyers, W. (ed) Naturally Occurring Radioactive Materials in Construction, Integrating Radiation Protection in Reuse (COST Action Tu1301 NORM4BUILDING).Woodhead Publishing Series in Civil and Structural Engineering, Elsevir.

Saadaoui, E.; Ghazel, N.; Romdhane, C.B.; Massoudi, N. (2017) Phosphogypsum: potential uses and problems-a review, International Journal of Environmental studies, 1–10.

EN 196-2:2013, Method of testing cement. Chemical analysis of cement.

Javellana, M.; Jawed, I. (1982) Extraction of free lime in Portland cement and clinker by ethylene glycol. Cem. Concr. Res. 12, 399–403.

Galan, I.; Hanein, T., Elhoweris, A.; Bannerman, M.N.; Glasser, F.P. (2017) Phase Compatibility in the System CaO-SiO2-Al2O3-SO3-Fe2O3 and the Effect of Partial Pressure on the Phase Stability. Industrial & Engineering Research. 56, 2341–2349.

Marroccoli, M.; Pace M.L.; Telesca, A.; Valenti, G.L. (2010) Synthesis of calcium sulfoaluminate cements from Al2O3-rich by-products from aluminum manufacture, in: Proceedings of the 2ed International Congress on Sustainable Construction Materials and Technologies, Ancona, Italy, 2010.

Jen, G.; Skalamprinos, S.; Whittaker, M.; Galan, I.; Ibabai, M.S.; Glasser, F.P. (2017) The impact of intrinsic anhydrite in an experimental calcium sulfoaluminate cement from a novel, carbon-minimized production process. Mater. Struct. 50, 144.

Brotherton, P.D.; Epstein, J.M.; Pryce, M.W.; White, A.H. (1974) Crystal Structure of Calcium Sulphosilicate Ca5(SiO4)2SO4. Aust. J. Chem. 27, 657–660.

Shermanl, N.; Beretkal, J.; Santoro, L.; Valenti, G.L. (1995) Long-term behaviour of hydraulic binders based on calciumsulfoaluminate and calcium sulfosilicate. Cem. Concr. Res. 25 [1], 113–126.

Idrissi, M; Diouri, A.; Damidot, D.; Greneche, J.M.; Talbi, M.A.; Taibi, M. (2010) Characterisation of iron inclusion during the formation of calcium sulfoaluminate phase. Cem. Concr. Res. 40, 1314–1319.

Idrissi, M; Diouri, A.; Talbi, M.A.; Sassi, O; Taibi, M.; Damidot, D. (2012) Hydration behavior of iron doped calcium sulfoaluminate phase at room temperature. MATEC Web of Conferences 2.

.

Gallardo H., M.; Almanza R., J.M.; Cortés H., D.A.; Escobedo B., J.C. (2016) Mechanical and chemical behavior of calcium sulfoaluminate cements obtained from industrial waste. Revista ALCONPAT 6, 15–27.

Taylor, H.F.W.; Famy, C.; Scrivener, K.L. (2016) Delayed ettringite formation. Cem. Concr. Res. 31, 683–693.

Kaufmann, J.; Winnefeld, F.; Lothenbach, B. (2016) Stability of ettringite in CSA cement at elevated temperatures. Adv. Cem. Res. 28, 251–261.




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es