Size effect in the fracture properties of sandwich panels of plasterboard and core of rock wool

Authors

DOI:

https://doi.org/10.3989/mc.2019.10617

Keywords:

Gypsum, Method of finite elements, Flexural strength, Mechanical properties, Modelization

Abstract


This paper extends the previous work of the authors and deals with the study of fracture of sandwich panels of plasterboard and rock wool under in-plane bending and tensile loading. It presents the results of the experimental campaign focused on the size effect of the tested specimens. To this end, mixed-mode (I and II) fracture tests have been carried out with specimens of three different sizes. The experimental results are compared with the values obtained from the numerical simulation of the test by using a model based on the embedded cohesive crack developed by the authors in previous published works. Comparison of the results shows how the model is able to reproduce the size effect of the specimens in this material from the parameters that characterize fracture behaviour. The aim is to use the cohesive model proposed by the authors to move from laboratory tests to a built panel.

Downloads

Download data is not yet available.

References

Ministerio de la Vivienda (2011) Código Técnico de la Edificación. Documento Básico HR: Protección Frente al Ruido Madrid.

Ministerio de la Vivienda, C.S.I.C. Instituto Eduardo Torroja (2010) Catálogo de elementos constructivos del Código Técnico de la Edificación Madrid.

Sancho, J.M.; Planas, J.; Cendón, D.A.; Reyes, E. and Gálvez, J.C. (2007) An embedded crack model for finite element analysis of concrete fracture, Eng. Frac. Mech., 74 (1–2), 75–86. https://doi.org/10.1016/j.engfracmech.2006.01.015

Reyes, E.; Gálvez, J.C.; Casati, M.J.; Cendón, D.A.; Sancho, J.M.; Planas, J. (2009) An embedded cohesive crack model for finite element analysis of brickwork masonry fracture. Eng. Frac. Mech,Vol 76, 1930–1944. https://doi.org/10.1016/j.engfracmech.2009.05.002

Reyes, E.; Casati, M.J. and Gálvez, J.C. (2008) Experimental scale model study of cracking in brick masonry under tensile and shear stress. Mater. Contrucc., 58, 291, 69–83.

Alonso, J.A.; Reyes,E. and Gálvez, J.C. (2013) Estudio de la fisuración de paneles sándwich de yeso laminado a alma de lana de roca. Mater. Contrucc, 63, 311, 403–421. https://doi.org/10.3989/mc.2013.01412

Bazant,Z.P. (1984) Size effect in Blunt fracture: concrete, rock, metal, J. Eng. Mech., ASCE, Vol 110, 518–535. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:4(518)

Bazant,Z.P.; Kim,J.K. (1984) Size effect in shear failure of longitudinally reinforced beams, ACI Journal, Vol 81, 456–468.

Asociación Española de Normalización y Certificación (2005) Norma UNE EN 520:2005. Placa de yeso laminado. Definiciones, especificaciones y métodos de ensayo Madrid.

Asociación Española de Normalización y Certificación (2002) Norma UNE EN 13.162:2002 Lana de roca. Definiciones, especificaciones y métodos de ensayo Madrid.

RILEM TC 89-FMT Fracture Mechanics of Concrete (1990) Size-effect method for determining fracture energy and process zone size of concrete. Mat. Struc., 23, 461–465.

Reyes, E. (2004) Fracture of the brickwork masonry under tensile/shear loading, Ph.D. Thesis (in Spanish), Ciudad Real, Spain.

Ba?ant, Z.P.; Planas, J (1998) Fracture and size effect in concrete and other quasibrittle materials. Boca Ratón, Florida : W.F. Chen, ed., CRC Press LLC.

Barenblatt, G.I. (1962) The mathematical theory of equilibrium of cracks in brittle fracture. Adv. Appl. Mech., Vol. 7, 55–129. https://doi.org/10.1016/S0065-2156(08)70121-2

Dugdale, D.S. (1960) Yielding of steel sheet sheets containing slits. J. Mech. Phys, Vol. 8, 100–108. https://doi.org/10.1016/0022-5096(60)90013-2

Hillerborg, A.; Modéer, M.; Petersson, P. E. (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem.t Concr. Res., 6, 773–782.

Sancho,J.M.; Planas, J.; Gálvez, J.C.; Reyes, E.;Cendón, D.A. (2006) An embedded cohesive crack model for finite element analysis of mixed mode fracture of concrete. Fatigue Fract Engng Mater Struct, Vol. 29, 1056–1065. https://doi.org/10.1111/j.1460-2695.2006.01076.x

Simó, J.; Oliver J.; Armero F. (1993) An analysis strong discontinuities induced by strain softening in rate-independent inelastic solids Comput. Mech., Vol 12, 277–96. https://doi.org/10.1007/BF00372173

Cendón, D.A.; Gálvez, J.C.; Elices, M.;Planas, J (2000) Modelling the fracture of concrete under mixed loading. Int. J. Fract., Vol. 103, 293–310. https://doi.org/10.1023/A:1007687025575

Gálvez, J.C.; Cendón, D.A.; Planas, J. (2002) Influence of shear parameters on mixed- mode fracture of concrete. Int. J. Fract,.118, 163–189. https://doi.org/10.1023/A:1022883132117

Oliver, J. (1996) Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part 1: fundamentals. Part 2: numerical simulations. Int. J. Num. Meth. Eng., 39, 3575–3623. https://doi.org/10.1002/(SICI)1097-0207(19961115)39:21<3575::AID-NME65>3.0.CO;2-E

ABAQUS (2017) Standard User's Manual, Version 6.14, Rhode Island, USA.

RILEM 50-FMC Committee Fracture Mechanics of Concrete (1986) Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Materials and Structures, vol. 18, 285–290

Published

2019-03-30

How to Cite

Alonso, J. A., Reyes, E., & Gálvez, J. C. (2019). Size effect in the fracture properties of sandwich panels of plasterboard and core of rock wool. Materiales De Construcción, 69(333), e181. https://doi.org/10.3989/mc.2019.10617

Issue

Section

Research Articles

Most read articles by the same author(s)

1 2 > >>