Materiales de Construcción, Vol 69, No 333 (2019)

Carbonation of hybrid concrete with high blast furnace slag content and its impact on structural steel corrosion


https://doi.org/10.3989/mc.2019.05418

D. E. Angulo-Ramirez
Grupo Materiales Compuestos, Universidad del Valle, Colombia
orcid http://orcid.org/0000-0003-3506-3960

R. Mejía de Gutiérrez
Grupo Materiales Compuestos, Universidad del Valle, Colombia
orcid http://orcid.org/0000-0002-5404-2738

W. G. Valencia-Saavedra
Grupo Materiales Compuestos, Universidad del Valle, Colombia
orcid http://orcid.org/0000-0002-8918-2132

M. H. F. de Medeiros
Federal University of Paraná, Brazil
orcid http://orcid.org/0000-0003-3112-9715

J. Hoppe-Filho
Federal University of Western Bahia, Brazil
orcid http://orcid.org/0000-0002-9645-6808

Abstract


The aim of this research was to study the carbonation resistance of a blast furnace slag concrete (80% GBFS/20%OPC), with and without alkaline activation, and its influence on the corrosion of structural reinforcement. An OPC-based concrete produced under the same specifications was used as a reference material. To do this, the material was subjected to an accelerated carbonation process under controlled conditions (65% relative humidity, 1% CO2, 25°C). The half-cell potential (Ecorr), linear polarization resistance (LPR) tests showed that both concretes based on GBFS led to depassivation of the reinforcing steel at approximately 99 days, which is the time required for full carbonation of the evaluated concretes.

Keywords


Carbonation; Blast furnace slag; Blended Concrete; Alkali-activated concrete; Corrosion

Full Text:


HTML PDF XML

References


Fernández Bertos, M.; Simons, S.J.R.; Hills, C.D.; Carey, P.J. (2004) A Review of Accelerated Carbonation Technology in the Treatment of Cement-Based Materials and Sequestration of CO2. J. Hazard. Mater. 112 [3], 193–205. https://doi.org/10.1016/j.jhazmat.2004.04.019 PMid:15302440

Galán García, I.; Andrade Perdrix, C.; Prieto Rábade, M.; Mora Peris, P.; López Agüí, J.C.; San Juan Barbudo, M.Á. (2010) Estudio Del Efecto Sumidero de CO2 de los Materiales de Base Cemento. Cemento y Hormigón, 939, 70–83.

Lim, M.; Han, G.-C.; Ahn, J.-W.; You, K.-S. (2010) Environmental Remediation and Conversion of Carbon Dioxide (CO2) into Useful Green Products by Accelerated Carbonation Technology. Int. J. Environ. Res. and Public Health 7 [1], 203–228. https://doi.org/10.3390/ijerph7010203 PMid:20195442 PMCid:PMC2819785

Marques, P.F.; Chastre, C.; Nunes, Â. (2013) Carbonation Service Life Modelling of RC Structures for Concrete with Portland and Blended Cements. Cem. Concr. Compos. 37, 171–184. https://doi.org/10.1016/j.cemconcomp.2012.10.007

Zornoza, E.; Payá, J.; Monzó, J.; Borrachero, M. V.; Garcés, P. (2009) The Carbonation of OPC Mortars Partially Substituted with Spent Fluid Catalytic Catalyst (FC3R) and Its Influence on Their Mechanical Properties. Constr. Build. Mater. 23 [3], 1323–1328. https://doi.org/10.1016/j.conbuildmat.2008.07.024

Yuanhua, L.; Dajiang, Z.; Dezhi, Z.,; Yuanguang, Y.; Taihe, S.; Kuanhai, D.; Chengqiang, R.; Deping, Z.; Feng, W. (2013) Experimental Studies on Corrosion of Cement in CO2 Injection Wells under Supercritical Conditions. Corros. Sci. 74, 13–21. . https://doi.org/10.1016/j.corsci.2013.03.018

Gruyaert, E.; Van den Heede, P.; De Belie, N. (2013) Carbonation of Slag Concrete: Effect of the Cement Replacement Level and Curing on the Carbonation Coefficient – Effect of Carbonation on the Pore Structure. Cem. Concr. Compos. 35 [1], 39–48. https://doi.org/10.1016/j.cemconcomp.2012.08.024

Khalil, E.A.B.; Anwar, M. (2015) Carbonation of Ternary Cementitious Concrete Systems Containing Fly Ash and Silica Fume. Water Sci. 29 [1], 36–44. https://doi.org/10.1016/j.wsj.2014.12.001

Borges, P.H.R.R.; Costa, J.O.; Milestone, N.B.; Lynsdale, C.J.; Streatfield, R.E. (2010) Carbonation of CH and C-S-H in Composite Cement Pastes Containing High Amounts of BFS. Cem. Concr. Res. 40 [2], 284–292. https://doi.org/10.1016/j.cemconres.2009.10.020

Osborne, G.J. (1999) Durability of Portland Blast-Furnace Slag Cement Concrete. Cem. Concr. Compos. 21 [1], 11–21. https://doi.org/10.1016/S0958-9465(98)00032-8

Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B. (2001) Resistance of Alkali-Activated Slag Concrete to Carbonation. Cem. Concr. Res. 31 [9], 1277–1283. https://doi.org/10.1016/S0008-8846(01)00574-9

Bilim, C.; Ati?, C.D.; Ati, C.D.; Ati?, C.D. (2012) Alkali Activation of Mortars Containing Different Replacement Levels of Ground Granulated Blast Furnace Slag. Constr. Build. Mater. 28 [1], 708–712. https://doi.org/10.1016/j.conbuildmat.2011.10.018

Law, D.W.; Adam, A.A.; Molyneaux, T.K.; Patnaikuni, I. (2012) Durability Assessment of Alkali Activated Slag (AAS) Concrete. Mater. Struct. 45 [9], 1425–1437. https://doi.org/10.1617/s11527-012-9842-1

Bilim, C.; Karahan, O.; Ati?, C.D.; ?lkentapar, S. (2015) Effects of Chemical Admixtures and Curing Conditions on Some Properties of Alkali-Activated Cementless Slag Mixtures. KSCE J. Civ. Eng. 19 [3], 733–741. https://doi.org/10.1007/s12205-015-0629-0

Puertas, F.; Palacios, M.; Vázquez, T. (2006) Carbonation Process of Alkali-Activated Slag Mortars. J. Mater. Sci. 41 [10], 3071–3082. https://doi.org/10.1007/s10853-005-1821-2

.

Bernal, S.A.; Mejía de Gutiérrez, R.; Pedraza, A.L.; Provis, J.L.; Rodriguez, E.D; Delvasto, S. (2011) Effect of Binder Content on the Performance of Alkali-Activated Slag Concretes. Cem. Concr. Res. 41 [1], 1–8. https://doi.org/10.1016/j.cemconres.2010.08.017

Bernal, S.A.; Mejía de Gutierrez, R.; Provis, J.L.; Rose, V. (2010) Effect of Silicate Modulus and Metakaolin Incorporation on the Carbonation of Alkali Silicate- Activated Slags. Cem. Concr. Res. 40 [6], 898–907. https://doi.org/10.1016/j.cemconres.2010.02.003

ASTM G59-97. (2014) Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements. West Conshohocken, PA.

Shi, C.; Krivenko, P. V.; Roy, D.M. (2006) Alkali-Activated Cements and Concretes. Taylor & Francis, Abingdon, UK. https://doi.org/10.4324/9780203390672

Torres, J.; Mejía de Gutiérrez, R.; Castelló, R.; Vizcayno, C. (2008) Proceso de Hidratación de Pastas de OPC Adicionadas Con Caolín Tratado Térmicamente. Rev. Fac. Ing. Univ. Antioquia 43, 77–85.

Elahi, A.; Khan, Q.U.Z.; Barbhuiya, S.A.,; Basheer, P.A.M.; Russell, M.I. (2012) Hydration Characteristics of Cement Paste Containing Supplementary Cementitious Materials. Arab. J. Sci. Eng. 37 [3], 535–544. https://doi.org/10.1007/s13369-012-0193-6

Lizarazo-Marriaga, J.; Claisse, P.; Ganjian, E. (2011) Effect of Steel Slag and Portland Cement in the Rate of Hydration and Strength of Blast Furnace Slag Pastes. J. Mater. Civ. Eng. 23 [2], 153–160. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000149

Acevedo-Martinez, E.; Gomez-Zamorano, L.Y.; Escalante- Garcia, J.I. (2012) Portland Cement-Blast Furnace Slag Mortars Activated Using Waterglass: – Part 1: Effect of Slag Replacement and Alkali Concentration. Constr. Build. Mater. 37, 462–469. https://doi.org/10.1016/j.conbuildmat.2012.07.041

Escalante-Garcia, J.I.; Castro-Borges, P.; Gorokhovsky, A.; Rodriguez-Varela, F.J. (2014) Portland Cement- Blast Furnace Slag Mortars Activated Using Waterglass: Effect of Temperature and Alkali Concentration. Constr. Build. Mater. 66, 323–328. https://doi.org/10.1016/j.conbuildmat.2014.04.120

Wang, Q.; Yan, P.; Mi, G. (2012) Effect of Blended Steel Slag–GBFS Mineral Admixture on Hydration and Strength of Cement. Constr. Build. Mater. 35, 8–14. https://doi.org/10.1016/j.conbuildmat.2012.02.085

Shafigh, P.; Jumaat, M.Z.; Mahmud, H.B.; Alengaram, U.J. (2013) Oil Palm Shell Lightweight Concrete Containing High Volume Ground Granulated Blast Furnace Slag. Constr. Build. Mater. 40, 231–238. https://doi.org/10.1016/j.conbuildmat.2012.10.007

Arora, A., Sant, G.; Neithalath, N. (2016) Ternary Blends Containing Slag and Interground/Blended Limestone: Hydration, Strength, and Pore Structure. Constr. Build. Mater. 102, 113–124. https://doi.org/10.1016/j.conbuildmat.2015.10.179

Özbay, E.; Erdemir, M.; Durmu?, H.?. (2016) Utilization and Efficiency of Ground Granulated Blast Furnace Slag on Concrete Properties – A Review. Constr. Build. Mater. 105, 423–434. https://doi.org/10.1016/j.conbuildmat.2015.12.153

Siddique, R.; Kaur, D. (2012) Properties of Concrete Containing Ground Granulated Blast Furnace Slag (GGBFS) at Elevated Temperatures. J. Adv. Res. 3 [1], 45–51. https://doi.org/10.1016/j.jare.2011.03.004

Siddique, R. (2014) Utilization (Recycling) of Iron and Steel Industry by-Product (GGBS) in Concrete: Strength and Durability Properties. J. Mater. Cycles Waste Manag. 16 [3], 460–467. https://doi.org/10.1007/s10163-013-0206-x

Zhang, W.; Ba, H. (2012) Effect of Ground Granulated Blast-Furnace Slag (GGBFS) and Silica Fume (SF) on Chloride Migration through Concrete Subjected to Repeated Loading. China Technol. Sci. 55 [11], 3102–3108. https://doi.org/10.1007/s11431-012-5027-y

Güneyisi, E.; Geso?lu, M. (2008) A Study on Durability Properties of High-Performance Concretes Incorporating High Replacement Levels of Slag. Mater. Struct. 41 [3], 479–493. https://doi.org/10.1617/s11527-007-9260-y

Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z. (2015) Utilization of Ground Granulated Blast Furnace Slag as Partial Cement Replacement in Lightweight Oil Palm Shell Concrete. Mater. Struct. 48 [8], 2545–2556. https://doi.org/10.1617/s11527-014-0336-1

Ortega, J.M.; Pastor, J.L.; Albaladejo, A.; Sánchez, I.; Climent, M.A. (2014) Durability and Compressive Strength of Blast Furnace Slag-Based Cement Grout for Special Geotechnical Applications. Mater. Construcc. 64 [313], e003. https://doi.org/10.3989/mc.2014.04912

Rodríguez, E.; Bernal, S.; Mejía de Gutiérrez, R.; Puertas, F. (2008) Hormigón Alternativo Basado En Escorias Activadas Alcalinamente. Mater. Construcc. 58 [291].

Barin, D.S. (2008) Carbonatação e absorção capilar em concretos de cimento portland branco com altos teores de adição de escória de alto forno e ativador químico. Tesis de Mestre em Engenharia Civil. Universidade Federal de Santa Maria.

Costa, M.P.; Silva, M.G.; Pinheiros, S.M.M.; Souza, F.L.S.; Zandonade, E.; Coelho, M.A.M.; Morimoto, T. (2005) Concretos Com Altos Teores de Escória de Alto Forno: Avaliação Da Carbonatação e Da Difusão de Íons Cloreto. 47o Congresso Brasileiro Do Concreto - IBRACON, Recife.

Bernal, S.A.; San Nicolas, R.; Provis, J.L.; Mejía de Gutiérrez, R.; van Deventer, J.S.J. (2014) Natural Carbonation of Aged Alkali-Activated Slag Concretes. Mater. Struct. 47 [4], 693–707. https://doi.org/10.1617/s11527-013-0089-2

Bernal, S.A. (2009) Carbonatación en concretos producidos a partir de sistemas binarios de una escoria siderúrgica y un metacaolin activados alcalinamente. Tesis Doctoral. Universidad del Valle, Cali, Colombia.

Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B. (2003) Resistance of Alkali-Activated Slag Concrete to Acid Attack. Cem. Concr. Res. 33 [10], 1607–1611. https://doi.org/10.1016/S0008-8846(03)00125-X

Puertas, F.; Torres, T.J.; Varga, C. (2013) Procedimiento Para La Fabricación de Cementos Alcalinos a Partir de Residuos Vítreos Urbanos e Industriales. Patente ES2394979 A1.

Bernal, S.A.; Mejía de Gutiérrez, R.; Provis, J.L. (2012) Engineering and Durability Properties of Concretes Based on Alkali-Activated Granulated Blast Furnace Slag/ Metakaolin Blends. Constr. Build. Mater. 33, 99–108. https://doi.org/10.1016/j.conbuildmat.2012.01.017

Ferreira, M.B. (2013) Estudo Da Carbonatação Natural de Concretos Com Diferentes Adições Minerais Após 10 Anos de Exposição. Tesis de Mestre em Engenharia Civil. Universidade Federal de Goiás.

Ho, D.W.S.; Lewis, R.K. (1987) Carbonation of Concrete and Its Prediction. Cem. Concr. Res. 17 [3], 489–504. https://doi.org/10.1016/0008-8846(87)90012-3

Mejía de Gutiérrez, R.; Rodríguez, C.; Rodríguez, E.; Torres, J.; Delvasto, S. (2009) Concreto Adicionado Con Metacaolín: Comportamiento a Carbonatación y Cloruros. Rev. Fac. Ing. Univ. Antioquia, 48, 55–64.

Castro, A.; Ferreira, R.; Lopes, A.M.; Cascudo, O.; Carasek, H. (2004) Relationship between Results of Accelerated and Natural Carbonation in Various Concretes. In: Vázquez, E., Hendriks, C.F. and Janssen, G.M.T., Eds., International RILEM Conference on the Use of Recycled Materials in Building and Structures, RILEM Publications SARL, Barcelona, 988–997.

Helene, P.R.D.L.; Castro-Borges, P. (2009) A Novel Method to Predict Concrete Carbonation. Concr. Cem. Investig. Des. 1 [1], 25–35.

Duffó, G.; Morris, W.; Raspini, I.; Saragovi, C. (2004) A Study of Steel Rebars Embedded in Concrete during 65 Years. Corros. Sci. 46 [9], 2143–2157. https://doi.org/10.1016/j.corsci.2004.01.006

Uller, L.; Troconis de Rincon, O.; Alanis, I.; Helene, P.; Mejía de Gutiérrez, R.; O’Reilly, V.; Andrade, C.; Carpio, J.J.; Díaz, I.; Salta, M.; Rodríguez, G.; Romero de Carruyo, A.; Sagues, A. (1998) Manual de Inspección, Evaluación y Diagnostico de Corrosión En Estructuras de Hormigón Armado. 2da edición. CYTED.

Aperador, W.; Mejía de Gutiérrez, R.; Bastidas, D.M. (2009) Steel Corrosion Behaviour in Carbonated Alkali- Activated Slag Concrete. Corros. Sci. 51 [9], 2027–2033. https://doi.org/10.1016/j.corsci.2009.05.033

Aperador, W.C.; Ruiz, J.H.B.; Gómez, R. (2012) Corrosion of Reinforcing Bars Embedded in Alkali-Activated Slag Concrete Subjected to Chloride Attack. Mater. Res. 15 [1], 57–62.

Bernal, S.A.; Provis, J.L.; Mejía de Gutiérrez, R.; van Deventer, J.S.J. (2015) Accelerated Carbonation Testing of Alkali-Activated Slag/Metakaolin Blended Concretes: Effect of Exposure Conditions. Mater. Struct. 48 [3], 653– 669. https://doi.org/10.1617/s11527-014-0289-4

Alcaide, J.S.; Alcocel, E.G.; Puertas, F.; Lapuente, R.; Garcés, P. (2007) Comportamiento de Morteros de Escoria Activada Alcalinamente Con Adición de Fibras de Carbón. Mater. Construcc. 57 [288].

Bernal, S.A. (2015) The Resistance of Alkali-Activated Cement-Based Binders to Carbonation. Handbook of Alkali-Activated Cements, Mortars and Concretes, Elsevier, 319–332. https://doi.org/10.1533/9781782422884.3.319

Cadore, W. (2008) Estudo Da Carbonatação Da Camada de Cobrimento de Protótipos de Concreto Com Altos Teores de Adições Minerais e Cal Hidratada. Tesis de Mestre em Engenharia Civil. Universidade Federal de Santa Maria.

Bastidas, D.M.; Fernández-Jiménez, A.; Palomo, A.; González, J.A. (2008) A Study on the Passive State Stability of Steel Embedded in Activated Fly Ash Mortars. Corros. Sci. 50 [4], 1058–1065. https://doi.org/10.1016/j.corsci.2007.11.016




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es