Thermal, physical and mechanical characterization of volcanic tuff masonries for the restoration of historic buildings

Authors

  • M. M. Barbero-Barrera Department of Construction and Technology in Architecture. Escuela Técnica Superior de Arquitectura, Technical University of Madrid https://orcid.org/0000-0002-4605-3154
  • N. Flores-Medina Department of Construction and Technology in Architecture. Escuela Técnica Superior de Arquitectura, Technical University of Madrid - Universidad Europea de Canarias. School of Architecture. Department of Projects and Representation of Architecture - Departamento de Construcción Arquitectónica, Escuela de Arquitectura, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira https://orcid.org/0000-0002-5826-4653
  • E. Moreno-Fernández Department of Construction and Technology in Architecture. Escuela Técnica Superior de Arquitectura, Technical University of Madrid https://orcid.org/0000-0001-6625-7093

DOI:

https://doi.org/10.3989/mc.2019.12917

Keywords:

Canary Islands, Tuff, Stone, Volcanic, Thermal

Abstract


An in-depth knowledge of building materials is essential in order to preserve them. Tuffs are one of the main types volcanic rocks in the Canary Islands. They are mainly used in masonry or as a filler of the ornamental parts of the façades. In both cases, they have been protected to guarantee their durability. However, in recent years, the renderings have been eliminated and the stone has been exposed to the elements. In this paper, two types of Canary-Island volcanic tuffs were characterized from a physical and mechanical point of view as well as their energy conservation, in order to better understand their behaviour and analyze the criteria for preserving them. Thermal conductivity and fluxes increase 2-3 times in wet conditions, as compared to dry ones. This, together with their high porosity demands the use of renderings to avoid stone decay, and at the same time improving living conditions.

Downloads

Download data is not yet available.

References

Troitino, M.A. (1998) Turismo y desarrollo sostenible en las ciudades históricas con patrimonio arquitectónico monumental. Estudios Turísticos 137, 211–228. Available at: https://dialnet.unirioja.es/servlet/articulo?codigo=2197398

Benito Martín, F.; Timón Tiemblo, M.P. coord. (2014) Plan Nacional de Arquitectura Tradicional, Instituto del Patrimonio Cultural de España, IPCE, Madrid (2014). Available at: http://www.culturaydeporte.gob.es/planesnacionales/planes-nacionales/arquitectura-tradicional.html

Baker, P. (2011) U-values and traditional buildings: in situ measurements and their comparisons to calculated values, Historic Scotland, Edinburgh (2011).

Luxán, M.; Gómez-Muñoz, G.; Barbero-Barrera, M.M.; Román-López, E. (2014) Energy and constructive consequences of a bad practice. Skinned architectures. In M. López, A. Yá-ez, S. Gomes da Costa, L. Avellá, coord. Proceedings of the International Conference on Energy Efficiency and Historic Buildings, Fundación de Casas Históricas y Singulares & Fundación Ars Civilis, Madrid.

Doehne, E.; Price, C.A. (2010) Stone Conservation: an Overview of Current Research, The Getty Conservation Institute, California (2010). Available at: http://www.getty.edu/publications/ PMid:21084798

IGME (2004). Mapa geológico de España. Instituto Geológico y Minero de España, (2004). Available at: http://info.igme.es/cartografia/geologico2000.asp

Guigou, C. (1990) Influencia de las características petrográficas de los áridos canarios en las propiedades de los hormigones, PhD Thesis, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria (1990).

Concepción, J.L. (1987) Arquitectura y dise-o de hogar ideal canario. Arquitectura tradicional, Asociación Cultural de las Islas Canarias (ACIC), La Laguna (1987).

Steven, L.; Quane, S.L.; Russell, J.K. (2005) Ranking welding intensity in pyroclastic deposits. Bull Volcanol, 67, 129–143. https://doi.org/10.1007/s00445-004-0367-5

Giordano, D.; Dingwell, B.; Romano, C. (2000). Viscosity of a Teide phonolite in the welding interval. In: Marti J, Wolff JA (eds), The geology and geophysics of Tenerife, Elsevier, Amsterdam (2000). https://doi.org/10.1016/S0377-0273(00)00226-2

Zárraga, R.; Cervantes, J.; Salazar-Hernández, C.; Wheeler, G. (2010) Effect of the addition of hydroxyl-terminated polydimethylsiloxane to TEOS-based stone consolidants. J Cultural Heritage 11, 138–144. https://doi.org/10.1016/j.culher.2009.07.002

Pérez, N.A.; Lima, E.; Bosch, P.; Méndez-Viva, J. (2014) Consolidating materials for the volcanic tuff in western Mexico. J Cultural Heritage 15, 352–358. https://doi.org/10.1016/j.culher.2013.07.010

D'Arienzo, L.; Scarfato, P.; Incarnato, L. (2008) New polymeric nanocomposites for improving the protective and consolidating efficiency of tuff stone. J Cultural Heritage 9, 253–260. https://doi.org/10.1016/j.culher.2008.03.002

Miliani, C.; Velo-Simpson M.L.; Scherer, G.W. (2007) Particle-modified consolidants: A study on the effect of particles on sol-gel properties and consolidation effectiveness. J Cultural Heritage 8, 1–6. https://doi.org/10.1016/j.culher.2006.10.002

Calderoni, B.; Cecere, G.; Cordasco, E.A.; Guerriero, L.; Lenza, P.; Manfredi, G. (2010) Metrological definition and evaluation of some mechanical properties of post-medieval Neapolitan brown tuff masonry. J Cultural Heritage 11, 163–171. https://doi.org/10.1016/j.culher.2009.11.002

Topal, T.; Doyuran, V. (1997) Engineering geological properties and durability assessment of the Cappadocian tuff. Eng Geol 47, 175–187. https://doi.org/10.1016/S0013-7952(97)00017-3

Erguler, Z.A (2009) Field-based experimental determination of the weathering rates of the Cappadocian tuff. Eng Geol 105, 186–199. https://doi.org/10.1016/j.enggeo.2009.02.003

Hee Lee, C.; Seong Lee, M.; Suh, M.; Choi, S.W. (2005) Weathering and deterioration of rock properties of the Dabotap pagoda (World Cultural Heritage), Republic of Korea. Environ Geol 47, 547–557. https://doi.org/10.1007/s00254-004-1177-y

Salazar-Hernández, C.; Cervantes, J.; Puy-Alquiza, M.J.; Miranda, R. (2015) Conservation of building materials of historic monuments using a hybrid formulation. J Cultural Heritage 16, 185–191. https://doi.org/10.1016/j.culher.2014.05.004

Augenti, N.; Parisi, F. (2011) Constitutive modelling of tuff masonry in direct shear. Constr Build Mat 25, 1612–1620. https://doi.org/10.1016/j.conbuildmat.2010.10.002

Felice, B.; Pasquale, V.; Tancredi, N.; Scherillo, S.; Guida, M. (2010) Genetic fingerprint of microorganisms associated with the deterioration of an historical tuff monument in Italy. J. Genet. 89, 253–257. https://doi.org/10.1007/s12041-010-0035-9

Martín-Hernández, M.; Alemán-Hernández, R.; López-García, J.S.; Martín-Rodríguez, F.G. (2005) Guía del patrimonio arquitectónico de Gran Canaria, Cabildo de Gran Canaria, Gran Canaria (2005).

UNESCO. United Nations Educational, Scientific and Cultural Organization. Available at: https://en.unesco.org/

González, C. (2006) Las Palmas de Gran Canaria. Sus barrios e instituciones, Anroart Ediciones, Gran Canaria (2006).

Rodríguez Batlori, A. (1999) La Gesta del Batán: IV Centenario del ataque holandés a Gran Canaria, Ministerio de Defensa, Gran Canaria (1999).

IGME (2018). Geological map of Spain. Available at: igme.es/cartografiadigital/geologica

Luxán, M.; Vázquez, M.; Gómez, G.; Román, E.; Barbero-Barrera, M.M. (2009) Actuaciones con criterios de sostenibilidad en la rehabilitación de viviendas en el centro de Madrid, EMVS, Madrid (2009).

Luxán, M.; Barbero, M.; Gómez, G.; Román, E. (2012). La envolvente como elemento de eficiencia energética. En: Eficiencia Energética y Energías renovables en rehabilitación de edificios. Vigo: Centro Tecnológico de Eficiencia y Sostenibilidad Energética, 172–184.

International Energy Agency (2015) Energy efficiency. Market Report. Market trends and medium-term prospects, International Energy Agency, France (2015).

AENOR (2006). EN 1926, Natural stone test methods. Determination of uniaxial compressive strength.

AENOR (2006). EN 12372, Natural stone test methods. Determination of flexural strength under concentrated load.

AENOR (2005) EN 14617-4, Agglomerated stone. Test methods. Determination of the abrasion resistance.

Winkler E.M. (1975) Stone: properties, durability in man's environment, Ed. Springer-Verlag Wien GmbH (1975). https://doi.org/10.1007/978-3-7091-3819-9

Veiga, M.R. (2009) Characteristics of repair mortars for historic buildings concerning quantified hygric requirements. In: Groot C, ed. Proceedings 078: Repair Mortars for Historic Masonry TC RMH, RILEM, France, 305–315.

AENOR (2008) EN 13755, Natural stone test methods. Determination of water absorption at atmospheric pressure.

AENOR (1999) EN 1925, Natural stone test methods. Determination of water absorption coefficient by capillarity.

AENOR (2006) EN 1936, Natural stone test methods. Determination of real density and apparent density, and of total and open porosity.

Navacerrada, M.A.; Fernández, P.; Díaz, C.; Pedrero, A. (2013) Thermal and acoustic properties of aluminium foams manufactured by the infiltration process. Applied Acoustics 74, 496–501. https://doi.org/10.1016/j.apacoust.2012.10.006

PHYWE. P2360300 series of publications. Laboratory Experiments, Physics. Göttingen: PHYWE SYSTEME GMBH & Co. KG

ASTM (2004) C1371-04a, Standard Test Method for Determination of Emittance of Materials Near Room Temperature Using Portable Emissometers.

Martín-Monroy, M. (1996) Comportamiento térmico de cerramientos soleados: un modelo de simulación por diferencias finitas, PhD Thesis, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria (1996).

AEMET (2018). Climate database. Available at www. weatherbase.com.

CTE (2015). Documento básico HE Ahorro de Energía, HE1: Limitación de demanda energética, Madrid, Ministerio de Industria, Turismo y Comercio, 2015. Available at: http://www.codigotecnico.org

Peng, C.; Wu, Z. (2008) In situ measuring and evaluating the thermal resistance of building construction. Energy Build. 40 (11), 2076–2082. https://doi.org/10.1016/j.enbuild.2008.05.012

Adhikari, R.S.; Lucchi, E.; Pracchi, V (2012) Experimental measurements on thermal transmittance of the opaque vertical walls in the historical buildings. In: J. Reiser, C. Jiménez, S. Biondi Antúnez de Mayolo (Eds.), Proceedings of PLEA2012. 28th Conference, Opportunities, Limits & Needs Towards an Environmentally Responsible Architecture, Lima, 7–9 November 2012, 1248–1256.

Rasooli, A.; Itard, L., Infante Ferreira, C. (2016) A response factor-based method for the rapid in-situ determination wall's thermal resistance in existing buildings. Energy and Buildings 119, 51–61. https://doi.org/10.1016/j.enbuild.2016.03.009

Lucchi, E. (2017) Thermal transmittance of historical stone masonries: A comparison among standard, calculated and measured data. Energy and Buildings 151, 393–405. https://doi.org/10.1016/j.enbuild.2017.07.002

Prota, A.; Marcari, G.; Fabbrocino, G.; Manfredi, G.; Aldea, C. (2006) Experimental in-plane behavior of tuff mansonry strengthened with cementitious matrix-grid composites. J Composites for Construction 10, 223–233. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:3(223)

Asprone, D.; Cadoni, E.; Prota, A.; Manfredi, G. (2009) Dynamic behavior of a Mediterranean natural stone under tensile loading. Int. J Rock Mech & Min Sci 46, 514–520. https://doi.org/10.1016/j.ijrmms.2008.09.010

Vielba-Cuerpo, C.; Hernández-Olivares, F. (2001) Tests to characterize the behaviour of natural Stone in contact with water. Mater Constr 52, 43–54.

Jackson, M.D.; Marra, F.; Hay, R.L.; Cawood, C.; Winkler, E.M. (2005) The judicious selection and preservation of tuff and travertine building stone in ancient Rome, Archaeometry 47, 485–510. https://doi.org/10.1111/j.1475-4754.2005.00215.x

D'Agostino, D. (2013) Moisture dynamics in an historical masonry structure: The Cathedral of Lecce (South Italy). Building and Environment 63, 122–133. https://doi.org/10.1016/j.buildenv.2013.02.008

Benavente, D.; García del Cura, M.A.; Fort, R.; Ordó-ez, S. (2004) Durability estimation of porous Building stones from structure and strength. Engineering Geology 74, 113–127. https://doi.org/10.1016/j.enggeo.2004.03.005

Ulusoy, M. (2007) Different igneous masonry blocks and salt crystal weathering rates in the architecture of historical city of Konya, Building and Environment 42, 3014–3024. https://doi.org/10.1016/j.buildenv.2005.01.020

Wanja Wedekind, Rubén López-Doncel, Reiner Dohrmann, Mathias Kocher, Siegfried Siegesmund (2013), Weathering of volcanic tuff rocks caused by moisture expansion, Environmental Earth Sciences 69, 1203–1224. https://doi.org/10.1007/s12665-012-2158-1

Cioffi, R.; Marino, O.; Mascolo, G. (1991) The physical action of water on the decay of building grey-tuff stone. Mat Eng 2, 263–275.

LIDER Sofware (2015) Documento básico HE Ahorro de Energía. HE1: Limitación de demanda energética, Madrid, Ministerio de Industria, Turismo y Comercio.

Brodsky, N.S.; Barker, G.T. (1999) Thermal conductivity as a function of saturation for welded and nonwelded tuff. In: Proceedings of the 37th US Rock Mechanics Symposium, Vail Colorado, June 6–9. Balkema, Rotterdam, 699–705.

Ahsworth, E. (1992) The variation of the thermal conductivity of tuff with moisture. Experimental results and proposed model. In Tillerson & Wawersik, eds, Rock Mechanics, Balkema, Rotterdam, 859–868.

Hens H.S.L.C (2006) The vapor diffusion resistance and air permeance of masonry and roofing systems. Building and Environment 41, 745–755. https://doi.org/10.1016/j.buildenv.2005.03.004

Barbero-Barrera, M.M.; Maldonado-Ramos, L.; Van alen, K.; García-Santos, A.; Neila González, F.J. (2014) Lime renders layers: an overview of their properties. J. Cult Her 3, 326–330. https://doi.org/10.1016/j.culher.2013.07.004

Cesaratto, P.G.; De Carli, M. (2013) A measuring campaign of thermal conductance in situ and possible impacts on net energy demand in buildings. Energy and Buildings 59, 29–36. https://doi.org/10.1016/j.enbuild.2012.08.036

Published

2019-03-30

How to Cite

Barbero-Barrera, M. M., Flores-Medina, N., & Moreno-Fernández, E. (2019). Thermal, physical and mechanical characterization of volcanic tuff masonries for the restoration of historic buildings. Materiales De Construcción, 69(333), e179. https://doi.org/10.3989/mc.2019.12917

Issue

Section

Research Articles