Materiales de Construcción, Vol 69, No 334 (2019)

Impact of twisting high-performance polyethylene fibre bundle reinforcements on the mechanical characteristics of high-strength concrete


https://doi.org/10.3989/mc.2019.01418

Y. Zhang
College of Basic Education, National University of Defence Technology - Centre for Structural Engineering and Informatics, Faculty of Engineering, University of Nottingham, China
orcid http://orcid.org/0000-0001-7017-1620

L. Yan
College of Basic Education, National University of Defence Technology, China
orcid http://orcid.org/0000-0002-9778-1960

S. Wang
College of Basic Education, National University of Defence Technology, China
orcid http://orcid.org/0000-0002-6100-8909

M. Xu
College of Basic Education, National University of Defence Technology, China
orcid http://orcid.org/0000-0002-7057-6772

Abstract


The quasi-static and dynamic mechanical behaviours of the concrete reinforced by twisting ultra-high molecular weight polyethylene (UHMWPE) fibre bundles with different volume fractions have been investigated. It was indicated that the improved mixing methodology and fibre geometry guaranteed the uniform distribution of fibres in concrete matrix. The UHMWPE fibres significantly enhanced the splitting tensile strength and residual compressive strength of concrete. The discussions on the key property parameters showed that the UHMWPE fibre reinforced concrete behaved tougher than the plain concrete. Owing to the more uniform distribution of fibres and higher bonding strength at fibre/matrix interface, the UHMWPE fibre with improved geometry enhanced the quasi-static splitting tensile strength and compressive strength of concrete more significantly than the other fibres. The dynamic compression tests demonstrated that the UHMWPE fibre reinforced concrete had considerable strain rate dependency. The bonding between fibres and concrete matrix contributed to the strength enhancement under low strain-rate compression.

Keywords


High performance concrete; Workability; Fibre reinforcement; Mechanical properties; Bond resistance

Full Text:


HTML PDF XML

References


Song, P.S.; Hwang, S. (2004) Mechanical properties of high-strength steel fiber-reinforced concrete. Constr. Build. Mater. 18: 669-73. https://doi.org/10.1016/j.conbuildmat.2004.04.027

Hao, Y.; Hao, H. (2013) Dynamic compressive behaviour of spiral steel fibre reinforced concrete in split Hopkinson pressure bar tests. Constr. Build. Mater. 48: 521-32. https://doi.org/10.1016/j.conbuildmat.2013.07.022

Simões, T.; Octávio, C.; Valença, J.; Costa, H.; Dias-da- Costa, D.; Júlio, E. (2017) Influence of concrete strength and steel fibre geometry on the fibre/matrix interface. Compos. B. Eng. 122: 156-64. https://doi.org/10.1016/j.compositesb.2017.04.010

Choi, Y.; Yuan, R.L. (2005) Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC. Cem. Concr. Res. 35: 1587-91. https://doi.org/10.1016/j.cemconres.2004.09.010

Langlois, V.; Fiorio, B.; Beaucour, A.L.; Cabrillac, R.; Gouvenot, D. (2007) Experimental study of the mechanical behavior of continuous glass and carbon yarn-reinforced mortars. Constr. Build. Mater. 21: 198-210. https://doi.org/10.1016/j.conbuildmat.2005.06.048

Dawood, E.T.; Ramli, M. (2011) High strength characteristics of cement mortar reinforced with hybrid fibres. Constr. Build. Mater. 25: 2240-7. https://doi.org/10.1016/j.conbuildmat.2010.11.008

Alberti, M.G.; Enfedaque, A.; Gálvez, J.C.; Cánovas, M.F.; Osorio, I.R. (2014) Polyolefin fiber-reinforced concrete enhanced with steel-hooked fibers in low proportions. Mater. Des. 60: 57-65. https://doi.org/10.1016/j.matdes.2014.03.050

Sim, J.; Park, C.; Moon, D.Y. (2005) Characteristics of basalt fiber as a strengthening material for concrete structures. Compos. B. Eng. 36: 504-12. https://doi.org/10.1016/j.compositesb.2005.02.002

Mastali, M.; Dalvand, A.; Sattarifard, A. (2017) The impact resistance and mechanical properties of the reinforced self-compacting concrete incorporating recycled CFRP fiber with different lengths and dosages. Compos. B. Eng. 112: 74-92. https://doi.org/10.1016/j.compositesb.2016.12.029

Hannawi, K.; Bian, H.; Prince-Agbodjan, W.; Raghavan, B. (2016) Effect of different types of fibers on the microstructure and the mechanical behavior of Ultra-High Performance Fiber-Reinforced Concretes. Compos. B. Eng. 86: 214-20. https://doi.org/10.1016/j.compositesb.2015.09.059

Raoof, S.M.; Koutas, L.N.; Bournas, D.A. (2017) Textile-reinforced mortar (TRM) versus fibre-reinforced polymers (FRP) in flexural strengthening of RC beams. Constr. Build. Mater. 151: 279-91. https://doi.org/10.1016/j.conbuildmat.2017.05.023

Karthikeyan, K.; Russell, B.P.; Fleck, N.A.; Wadley, H.N.G.; Deshpande, V.S. (2013) The effect of shear strength on the ballistic response of laminated composite plates. Eur. J. Mech. A. Solids. 42: 35-53. https://doi.org/10.1016/j.euromechsol.2013.04.002

Attwood, J.P.; Fleck, N.A.; Wadley, H.N.G.; Deshpande, V.S. (2015) The compressive response of ultra-high molecular weight polyethylene fibres and composites. Int. J. Solids. Struct. 71: 141-55. https://doi.org/10.1016/j.ijsolstr.2015.06.015

Attwood, J.P.; Khaderi, S.N.; Karthikeyan, K. (2014) The out-of-plane compressive response of Dyneema® composites. J. Mech. Phys. Solids. 70: 200-26. https://doi.org/10.1016/j.jmps.2014.05.017

O'Masta, M.R.; Crayton, D.H.; Deshpande, V.S.; Wadley, H.N.G. (2015) Mechanisms of penetration in polyethylene reinforced cross-ply laminates. Int. J. Impact. Eng. 86: 249- 64. https://doi.org/10.1016/j.ijimpeng.2015.08.012

Chocron, S.; King, N.; Bigger, R.; Walker, J.D.; Heisserer, U.; van der Werff, H. (2013) Impacts and Waves in Dyneema®HB80 Strips and Laminates. Int. J. Appl. Mech. 80: 1-10. https://doi.org/10.1115/1.4023349

Russell, B.P.; Karthikeyan, K.; Deshpande, V.S.; Fleck, N.A. (2013) The high strain rate response of Ultra High Molecular-weight Polyethylene: From fibre to laminate. Int. J. Impact. Eng. 60: 1-9. https://doi.org/10.1016/j.ijimpeng.2013.03.010

Karthikeyan, K.; Russell, B.P.; Fleck, N.A.; O'Masta, M.; Wadley, H.N.G.; Deshpande, V.S. (2013) The soft impact response of composite laminate beams. Int. J. Impact. Eng. 60: 24-36. https://doi.org/10.1016/j.ijimpeng.2013.04.002

Li, J.; Wu, C.; Liu, Z.X. (2018) Comparative evaluation of steel wire mesh, steel fibre and high performance polyethylene fibre reinforced concrete slabs in blast tests. Thin-Walled. Struct. 126: 117-26. https://doi.org/10.1016/j.tws.2017.05.023

Li, L.; Yan, L.; Zhang, Y. (2015) Experiment research of UHMWPE fiber reinforced concrete under triaxial compression. International Conference on Applied Science and Engineering Innovation (ASEI 2015). 1847-52. https://doi.org/10.2991/asei-15.2015.367

Zhang, Y.; Yan, L.; Zhu, L.; Zhang, S.; Li, L. (2014) Experiment research on mechanical properties and penetration performance of UHMWPE fiber concrete. Adv. Mater. Res. 989-994: 961-5. https://doi.org/10.4028/www.scientific.net/AMR.989-994.961

Xu, Z.; Hao, H.; Li, H.N. (2012) Experimental study of dynamic compressive properties of fibre reinforced concrete material with different fibres. Mater. Des. 33: 42-55. https://doi.org/10.1016/j.matdes.2011.07.004

Lok, T.S.; Asce, M.; Zhao, P.J. (2014) Impact response of steel fibre-reinforced concrete using a Split Hopkinson Pressure Bar. J. Mater. Civ. Eng. 16: 54-9. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:1(54)

Tedesco, J.W.; Ross, C.A. (1998) Strain-Rate-Dependent Constitutive Equations for Concrete. J. Press. Vessel. Technol. 120: 398-405. https://doi.org/10.1115/1.2842350

Li, Q.M.; Meng, H. (2003) About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. Int. J. Solids. Struct. 10: 343- 60. https://doi.org/10.1016/S0020-7683(02)00526-7

Yan, L.; Zhang, Y.; Zhu, L. (2014) Basic mechanical properties of ultra high molecular weight polyethylene fiber reinforced concrete. Journal of National University of Defense Technology. 36: 43-7.

Máca, P.; Sovják, R.; Konvalinka, P. (2014) Mix design of UHPFRC and its response to projectile impact. Int. J. Impact. Eng. 63: 158-63. https://doi.org/10.1016/j.ijimpeng.2013.08.003

Habel, K.; Gauvreau, P. (2008) Response of ultra-high performance fiber reinforced concrete (UHPFRC) to impact and static loading. Cem. Concr. Compos. 30: 938- 46. https://doi.org/10.1016/j.cemconcomp.2008.09.001

Lin, Z. (2013) Research on mechanical behaviors and anti-penetration characteristics of UHMWPE fibre reinforced concrete. Changsha: National University of Defence Technology.

Su, Y.; Li, J.; Wu, C.; Wu, P.; Li, Z.X. (2016) Influences of nano-particles on dynamic strength of ultra-high performance concrete. Compos. B. Eng. 91: 595-609. https://doi.org/10.1016/j.compositesb.2016.01.044

Ji, B. (2011) Experimental study and numerical simulation on static and dynamic compressive behavior of 3-D braid steel fiber reinforced concrete. Nanjing, China: Nanjing University of Aeronautics and Astronautics.

Zhang, W. (2010) Experimental research of the mechanical properties of polypropylene fiber reinforced high-strength concrete. Taiyuan: Taiyuan University of Technology.

Jiang, C.; Fan, K.; Wu, F.; Chen, D. (2014) Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Mater. Des. 58: 187-93. https://doi.org/10.1016/j.matdes.2014.01.056




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es