Materiales de Construcción, Vol 69, No 334 (2019)

Study of the expansion of cement mortars manufactured with Ladle Furnace Slag LFS

A. Rodríguez
Departamento de Construcciones Arquitectónicas e Ingeniería de la Construcción y del Terreno Escuela Politécnica Superior Universidad de Burgos, Spain

I. Santamaría-Vicario
Departamento de Construcciones Arquitectónicas e Ingeniería de la Construcción y del Terreno Escuela Politécnica Superior Universidad de Burgos, Spain

V. Calderón
Departamento de Construcciones Arquitectónicas e Ingeniería de la Construcción y del Terreno Escuela Politécnica Superior Universidad de Burgos, Spain

C. Junco
Departamento de Construcciones Arquitectónicas e Ingeniería de la Construcción y del Terreno Escuela Politécnica Superior Universidad de Burgos, Spain

J. García-Cuadrado
Departamento de Construcciones Arquitectónicas e Ingeniería de la Construcción y del Terreno Escuela Politécnica Superior Universidad de Burgos, Spain


Industrial by-products generated in the steel manufacturing are successfully used as raw materials in the production of construction materials. However, steel slags, due to their nature and composition, can cause undesirable side-effects in mortars and concretes. The reactive components of LFS and EAFS can affect the stability of the cement matrix. This situation may be prevented by an adequate pre-treatment of slag stabilization and a study of the possible reactions within its mineralogical components, to ensure the stability of the slag over time. In this work, an experimental process is shown to evaluate the behaviour of LFS under adverse environmental conditions when used as aggregates in the manufacture of cement mortars for masonry, such as the presence of humidity, high temperatures (80°C) and possible alkali-silica and alkali-silicate reactions. The results show an acceptable behaviour under normal environmental conditions (20°C). However, the formation crystalline acicular structures were observed under high temperatures (80°C) and in the presence of humidity, which degraded the internal structure of the mortars manufactured with LFS.


Mortar; LFS; Steelmaking slags; Expansion; Reactivity

Full Text:



Kirchherr, J.; Reike, D.; Hekkert, M. (2017) Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recy. 127, 221-232.

Suárez, P. Á.; Marcote, P. V.; Emilia, I. (2016) Hacia el desarrollo sostenible en el tercer milenio. Análisis de una estrategia educativa para la concienciación y la estimulación de conductas sostenibles. Paradigma, 27, 55-72.

European Commission (2014) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels.

Potting, J.; Nierhoff, N.; Montevecchi, F.; Antikainen, R.; Colgan, S.; Hauser, A.; Hanemaaijer, A. (2017) Input to the European Commission from European EPAs about monitoring progress of the transition towards a circular economy in the European Union.

Olmez, G. M.; Dilek, F. B.; Karanfil, T.; Yetis, U. (2016) The environmental impacts of iron and steel industry: a life cycle assessment study. J. Clean. Prod. 130, 195-201.

WSO (2014). World Steel Association website: Retrieved on May 2018.

Piatak, N. M.; Parsons, M. B.; Seal, R. R. (2015) Characteristics and environmental aspects of slag: A review. Appl. Geochem. 57, 236-266.

Motz, H.; Geiseler, J. (2001) Products of steel slags: an opportunity to save natural resources. Waste Manage. 21, 285-293.

Lopez, F. (1997). Physico-chemical and mineralogical properties of EAF and AOD slags. In EOSC'97: 2 nd European Oxygen Steelmaking Congress, 417-426.

Frías, M.; Rojas, M. S. de.; Uría, A. (2002) Study of the instability of black slags from electric arc furnace steel industry. Mater. Construcc. 52, 79-83.

Manso, J. M.; Gonzalez, J. J.; Polanco, J. A. (2004) Electric arc furnace slag in concrete. ASCE J. Mater. Civ. Eng. 16, 639-645.

Rodriguez, Á.; Manso, J. M.; Aragón, Á.; Gonzalez, J. J. (2009) Strength and workability of masonry mortars manufactured with ladle furnace slag. Resour. Conserv. Recy. 53, 645-651.

Kanagawa, A.; Kuwayama, T. (1997) The improvement of soft clayey soil utilizing reducing slag produced from electric arc furnace. Denki Seiko (Electric Furnace Steel) (Japan), 68, 261-267.

Ahmedzade, P.; Sengoz, B. (2009). Evaluation of steel slag coarse aggregate in hot mix asphalt concrete. J. Hazar. Mater. 165, 300-305. PMid:19022573

Kandhal, P.; Hoffman, G. (1997) Evaluation of steel slag fine aggregate in hot-mix asphalt mixtures. Transportation Research Record. Journal of the Transportation Research Board 1583, 28-36.

Biskri, Y.; Achoura, D.; Chelghoum, N.; Mouret, M. (2017) Mechanical and durability characteristics of High Performance Concrete containing steel slag and crystalized slag as aggregates. Constr. Build. Mater. 150, 167-178.

Vijayaraghavan, J.; Jude, A. B.; Thivya, J. (2017) Effect of copper slag, iron slag and recycled concrete aggregate on the mechanical properties of concrete. Resour. Policy 53, 219-225.

Wijayasundara, M.; Mendis, P.; Crawford, R. H. (2017) Methodology for the integrated assessment on the use of recycled concrete aggregate replacing natural aggregate in structural concrete. J. Clean. Prod. 166, 321-334.

Santamaría-Vicario, I.; Rodríguez, A.; Gutiérrez-González, S.; Calderón, V. (2015) Design of masonry mortars fabricated concurrently with different steel slag aggregates. Constr. Build. Mater. 95, 197-206.

Santamaría-Vicario, I.; Rodríguez, A.; Junco, C.; Gutiérrez- González, S.; Calderón, V. (2016) Durability behavior of steelmaking slag masonry mortars. Mater. Design. 97, 307-315.

Rodríguez, A.; Gutiérrez-González, S.; Horgnies, M.; Calderón, V. (2013). Design and properties of plaster mortars manufactured with ladle furnace slag. Mater. Design. 52, 987-994.

Manso, J. M.; Losañez, M.; Polanco, J. A.;Gonzalez, J. J. (2005) Ladle furnace slag in construction. ASCE J. Mater. Civ. Eng. 17, 513-518.

Gahan, C. S.; Cunha, M. L.; Sandström, Å. (2009) Comparative study on different steel slags as neutralizing agent in bioleaching. Hydrometallurgy 95, 190-197.

Kourounis, S.; Tsivilis, S.; Tsakiridis, P. E.; Papadimitriou, G. D., Tsibouki, Z. (2007) Properties and hydration of blended cements with steelmaking slag. Cem. Concr. Res. 37, 815-822.

Arribas, I.; Vegas, I.; San-Jose, J. T.; Manso, J. M. (2014) Durability studies on steelmaking slag concretes. Mater. Design. 63, 168-176.

Wang, Q.; Wang, D.; Zhuang, S. (2017) The soundness of steel slag with different free CaO and MgO contents. Constr. Build. Mater. 151, 138-146.

Kuo, W. T.; Shu, C. Y.; Han, Y. W. (2014) Electric arc furnace oxidizing slag mortar with volume stability for rapid detection. Constr. Build. Mater. 53, 635-641.

Polanco, J. A.; Manso, J. M.; Setién, J.; González, J. J. (2011) Strength and Durability of Concrete Made with Electric Steelmaking Slag. ACI Mater. J. 108, 196-203.

EN 1015-3:2000. Methods of test for mortar for masonry. Part 3: Determination of consistence of fresh mortar (by flow table).

EN 1015-6:1999/A1:2007. Methods of test for mortar for masonry-Part 6: Determination of bulk density of fresh mortar.

EN 1015-7:1999. Methods of test for mortar for masonry- Part 7: Determination of air content of fresh mortar.

EN 1015-11:2000. Methods of test for mortar for masonry. Part 11: Determination of flexural and compressive strength of hardened mortar.

UNE 83-318-94:1994 Concrete tests. Determination of the length changes.

UNE 146508 EX: 1999 Test for aggregates. Determination of the alkali-silica and alkali-silicate potential reactivity of aggregates. Accelerated mortar bar test.

Manso, J. M.; Rodríguez, Á.; Aragón, Á.; Gonzalez, J. J. (2011) The durability of masonry mortars made with ladle furnace slag. Constr. Build. Mater. 25, 3508-3519.

Herrero, T.; Vegas, I. J.; Santamaría, A.; San-José, J. T.; Skaf, M. (2016) Effect of high-alumina ladle furnace slag as cement substitution in masonry mortars. Constr. Build. Mater. 123, 404-413.

Setién J.; Hernández D.; Gonzalez J. J. (2009) Characterization of ladle furnace basic slag for use as a construction material. Constr. Build. Mater. 23, 1788-1794.

Gadea, J.; Soriano, J.; Martín, A.; Campos, P. L.; Rodríguez, A.; Junco, C.; Calderón, V. (2010) The alkali-aggregate reaction for various aggregates used in concrete. Mater. Construc. 60, 69-78.

Taylor, H.F.; Famy, C.; Scrivener, K. (2001) Delayed ettringite formation. Cement and Concrete Research, 31, 683-693.

Collepardi, M. (2003) A state-of-the-art review on delayed ettringite attack on concrete. Cement Concrete Comp., 25, 401-407.

Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support