Materiales de Construcción, Vol 69, No 335 (2019)

Alkali-activated binary concrete based on a natural pozzolan: physical, mechanical and microstructural characterization


https://doi.org/10.3989/mc.2019.06618

R. Robayo-Salazar
Composites Materials Group (CENM), School of Materials Engineering, Universidad del Valle, Colombia
orcid http://orcid.org/0000-0003-1687-2885

R. Mejía de Gutiérrez
Composites Materials Group (CENM), School of Materials Engineering, Universidad del Valle, Colombia
orcid http://orcid.org/0000-0002-5404-2738

F. Puertas
Eduardo Torroja Institute for Construction Science (IETcc-CSIC), Spain
orcid http://orcid.org/0000-0002-4215-0184

Abstract


This article presents the physical, mechanical and microstructural characterization of an alkali-activated binary concrete (AABC) based on a natural pozzolan (NP) of volcanic origin (70%) and granulated blast furnace slag (GBFS) (30%) cured at room temperature (25°C). A solution based on the combination of NaOH and waterglass (Na2SiO3·5H2O) was employed as an alkaline activator. The concrete design was obtained using a modified version of the “absolute volume” method (ACI 211.1). The performance of the AABC was similar and even superior to that of the reference concrete (OPC); e.g., it exhibited a compressive strength of up to 43.4 MPa at 360 days. These results demonstrate that the NP has potential for use in the industrial-scale production of these types of materials in the foreseeable future.

Keywords


Alkali-activated concrete; Binary concrete; Natural volcanic pozzolan; Granulated blast furnace slag; Mechanical and physical properties

Full Text:


HTML PDF XML

References


Davidovits, J. (1994) Properties of Geopolymer Cements. First Int. Conf. Alkaline Cem. Concr. 131-149.

Turner, L.K.; Collins, F.G. (2013) Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 43, 125-130. https://doi.org/10.1016/j.conbuildmat.2013.01.023

Provis, J.L. (2016) Alkali-activated materials. Cem. Concr. Res.

Shi, C.; Jiménez, A.F.; Palomo, A. (2011) New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 41, 750-763. https://doi.org/10.1016/j.cemconres.2011.03.016

Van Deventer, J.S.J.; Provis, J.L. (2014) Alkali-Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM, Springer, (2014).

Bernal, S.A.; Provis, J.L. (2014) Durability of alkali-activated materials: Progress and perspectives. J. Am. Ceram. Soc. 97, 997-1008. https://doi.org/10.1111/jace.12831

Palomo, A.; Krivenko, P.; Garcia-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernández-Jiménez, A. (2014) A review on alkaline activation: new analytical perspectives. Mater. Construcc. 64, e022. https://doi.org/10.3989/mc.2014.00314

Pacheco-Torgal, F.; Labrincha, J.A.; Leonelli, C.; Palomo, A.; Chindaprasirt, P. (2014) Handbook of Alkali-Activated Cements, Mortars and Concretes. Woodhead Publishing Series in Civil and Structural Engineering, (2014). https://doi.org/10.1533/9781782422884.1 PMid:25842101

Van Deventer, J.S.J.; Provis, J.L.; Duxson, P. (2012) Technical and commercial progress in the adoption of geopolymer cement. Miner. Eng. 29, 89-104. https://doi.org/10.1016/j.mineng.2011.09.009

Shoji, S.; Dahlgren, R.; Nanzyo, M. (1993) Terminology, Concepts and Geographic Distribution of Volcanic Ash Soils. Dev. Soil Sci. 21, 1-5. https://doi.org/10.1016/S0166-2481(08)70262-9

Pourkhorshidi, A.R.; Najimi, M.; Parhizkar, T.; Jafarpour, F.; Hillemeier, B. (2010) Applicability of the standard specifications of ASTM C618 for evaluation of natural pozzolans. Cem. Concr. Compos. 32, 794-800. https://doi.org/10.1016/j.cemconcomp.2010.08.007

Takahashi, T.; Shoji, S. (2002) Distribution and classification of volcanic ash soils. Glob. Environ. Res. 6, 83-97.

Lizcano, A.; Herrera, M.C. (2006) Suelos derivados de cenizas volcánicas en Colombia. Rev. Int. Desastres Naturales Accidentes e Infraestructura Civil 6, 167-198.

Robayo-Salazar, R.A.; Mejía de Gutiérrez, R. (2018) Natural volcanic pozzolans as an available raw material for alkali-activated materials in the foreseeable future: A review. Constr. Build. Mater. 189, 109-118. https://doi.org/10.1016/j.conbuildmat.2018.08.174

Allahverdi, A.; Mehrpour, K.; Kani, E.N. (2008) Investigating the possibility of utilizing pumice-type natural pozzonal in production of geopolymer cement. Ceram. Silikaty. 52, 16-23.

Allahverdi, A.; Kani, E.N.; Yazdanipour, M. (2011) Effects of blast furnance slag on natural pozzolan- based geopolymer cement. Ceram. Silikaty. 55, 68-78.

Kani, E.N.; Allahverdi, A. (2009) Effect of chemical composition on basic engineering properties of inorganic polymeric binder based on natural pozzolan. Ceram. Silikaty. 53, 195-204.

Kani, E.N.; Allahverdi, A.; Provis, J.L. (2017) Calorimetric study of geopolymer binders based on natural pozzolan. J. Therm. Anal. Calorim. 127, 2181-2190. https://doi.org/10.1007/s10973-016-5850-7

Kani, E.N.; Allahverdi, A. (2011) Investigating shrinkage changes of natural pozzolan based geopolymer cement paste. Iran J. Mater. Sci. Eng. 8, 50-60.

Kani, E.N.; Allahverdi, A. (2009) Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan. J. Mater. Sci. 44, 3088-3097. https://doi.org/10.1007/s10853-009-3411-1

Kani, E.N.; Allahverdi, A.; Provis, J.L. (2012) Efflorescence control in geopolymer binders based on natural pozzolan. Cem. Concr. Compos. 34, 25-33. https://doi.org/10.1016/j.cemconcomp.2011.07.007

Lemougna, P.N.; Chinje Melo, U.F.; Delplancke, M.P.; Rahier, H. (2014) Influence of the chemical and mineralogical composition on the reactivity of volcanic ashes during alkali activation. Ceram. Int. 40, 811-820. https://doi.org/10.1016/j.ceramint.2013.06.072

Lemougna, P.N.; Chinje Melo, U.F.; Delplancke, M.P.; Rahier, H. (2013) Influence of the activating solution composition on the stability and thermo-mechanical properties of inorganic polymers (geopolymers) from volcanic ash. Constr. Build. Mater. 48, 278-286. https://doi.org/10.1016/j.conbuildmat.2013.06.089

Lemougna, P.N.; MacKenzie, K.J.D.; Melo, U.F.C. (2011) Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceram. Int. 37, 3011-3018. https://doi.org/10.1016/j.ceramint.2011.05.002

Lemougna, P.N.; MacKenzie, K.J.D.; Jameson, G.N.L.; Rahier, H.; Chinje Melo, U.F. (2013) The role of iron in the formation of inorganic polymers (geopolymers) from volcanic ash: a 57 Fe Mossbauer spectroscopy study. J. Mater. Sci. 48, 5280-5286. https://doi.org/10.1007/s10853-013-7319-4

Bondar, D.; Lynsdale, C.J.; Milestone, N.B.; Hassani, N. (2012) Oxygen and chloride permeability of alkali-activated natural pozzolan concrete. ACI Mater. J. 109, 53-61. https://doi.org/10.14359/51683570

Bondar, D.; Lynsdale, C.J.; Milestone, N.B.; Hassani, N.; Ramezanianpour, A.A. (2011) Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans. Cem. Concr. Compos. 33, 251-260. https://doi.org/10.1016/j.cemconcomp.2010.10.021

Bondar, D.; Lynsdale, C.J.; Milestone, N.B.; Hassani, N.; Ramezanianpour, A.A. (2010) Geopolymer cement from alkali-activated natural pozzolans: Effect of addition of minerals. In: 2nd International Conference on Sustainable Construction Materials and Technologies. Italy.

Bondar, D.; Lynsdale, C.J.; Milestone, N.B.; Hassani, N.; Ramezanianpour, A.A. (2011) Effect of adding mineral additives to alkali-activated natural pozzolan paste. Constr. Build. Mater. 25, 2906-2910. https://doi.org/10.1016/j.conbuildmat.2010.12.031

Bondar, D.; Lynsdale, C.J.; Milestone, N.B. (2012) Simplified Model for Prediction of Compressive Strength of Alkali- Activated Natural Pozzolans. J. Mater. Civ. Eng. 24, 391-400. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000400

Bondar, D.; Lynsdale, C.J.; Milestone, N.B.; Hassani, N. (2015) Sulfate Resistance of Alkali Activated Pozzolans. Int.J. Concr. Struct. Mater. 9, 145-158. https://doi.org/10.1007/s40069-014-0093-0

Bondar, D.; Lynsdale, C.J.; Milestone, N.B.; Hassani, N.; Ramezanianpour, A.A. (2011) Effect of heat treatment on reactivity-strength of alkali-activated natural pozzolans. Constr. Build. Mater. 25, 4065-4071. https://doi.org/10.1016/j.conbuildmat.2011.04.044

Bondar, D.; Lynsdale, C.J.; Milestone, N.B.; Hassani, N.; Ramezanianpour, A.A. (2011) Engineering Properties of Alkali Activated Natural Pozzolan Concrete. ACI Mater. J. 108, 64-72. https://doi.org/10.14359/51664217

Bondar, D.; Lynsdale, C.J.; Milestone, N.B. (2013) Alkali-Activated Natural Pozzolan Concrete as New Construction Material. ACI Mater. J. 110, 331-338. https://doi.org/10.14359/51685667

Djobo, J.N.Y.; Tchadjié, L.N.; Tchakoute, H.K.; Kenne, B.B.D.; Elimbi, A.; Njopwouo, D. (2014) Synthesis of geopolymer composites from a mixture of volcanic scoria and metakaolin. J. Asian Ceram. Soc. 2, 387-398. https://doi.org/10.1016/j.jascer.2014.08.003

Djobo, J.N.Y.; Elimbi, A.; Dika Manga, J.; Djon Li Ndjock, I.B. (2016) Partial replacement of volcanic ash by bauxite and calcined oyster shell in the synthesis of volcanic ashbased geopolymers. Constr. Build. Mater. 113, 673-681. https://doi.org/10.1016/j.conbuildmat.2016.03.104

Djobo, J.N.Y.; Elimbi, A.; Tchakouté, H.K.; Kumar, S. (2016) Mechanical activation of volcanic ash for geopolymer synthesis: effect on reaction kinetics, gel characteristics, physical and mechanical properties. RSC Adv. 6, 39106-39117. https://doi.org/10.1039/C6RA03667H

Djobo, J.N.Y.; Tchakoute, H.K.; Ranjbar, N.; Elimbi, A.; Tchadjie, L.N.; Njopwouo, D.; Biernacki, J. (2016) Gel Composition and Strength Properties of Alkali-Activated Oyster Shell-Volcanic Ash: Effect of Synthesis Conditions. J. Am. Ceram. Soc. 99, 3159-3166. https://doi.org/10.1111/jace.14332

Djobo, J.N.Y.; Elimbi, A.; Tchakouté, H.K.; Kumar, S. (2016) Mechanical properties and durability of volcanic ash based geopolymer mortars. Constr. Build. Mater. 124, 606-614. https://doi.org/10.1016/j.conbuildmat.2016.07.141

Djobo, J.N.Y.; Elimbi, A.; Tchakouté, H.K.; Kumar, S. (2016) Reactivity of volcanic ash in alkaline medium, microstructural and strength characteristics of resulting geopolymers under different synthesis conditions. J. Mater. Sci. 51, 10301-10317. https://doi.org/10.1007/s10853-016-0257-1

Tchakouté, H.K.; Elimbi, A.; Mbey, J.A.; Sabouang, C.J.N.; Njopwouo, D. (2012) The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymers products: A comparative study. Constr. Build. Mater. 35, 960-969. https://doi.org/10.1016/j.conbuildmat.2012.04.023

Tchakouté, H.K.; Mbey, J.A.; Elimbi, A.; Kenne Diffo, B.B.; Njopwouo, D. (2013) Synthesis of volcanic ash-based geopolymer mortars by fusion method: Effects of adding metakaolin to fused volcanic ash. Ceram. Int. 39, 1613-1621. https://doi.org/10.1016/j.ceramint.2012.08.003

Tchakoute, H.K.; Elimbi, A.; Yanne, E.; Djangang, C.N. (2013) Utilization of volcanic ashes for the production of geopolymers cured at ambient temperature. Cem. Concr. Compos. 38, 75-81. https://doi.org/10.1016/j.cemconcomp.2013.03.010

Tchakoute, H.K.; Elimbi, A.; Kenne Diffo, B.B.; Mbey, J.A.; Njopwouo, D (2013) Synthesis of geopolymers from volcanic ash via the alkaline fusion method: Effect of Al2O3/ Na2O molar ratio of soda-volcanic ash. Ceram. Int. 39, 269-276. https://doi.org/10.1016/j.ceramint.2012.06.021

Robayo-Salazar, R.A.; Mejía de Gutiérrez, R.; Gordillo, M. (2016) Natural pozzolan-and granulated blast furnace slag-based binary geopolymers. Mater. Construcc. 66 [321], e077. https://doi.org/10.3989/mc.2016.03615

Jafari Nadoushan, M.; Ramezanianpour, A.A. (2016) The effect of type and concentration of activators on flowability and compressive strength of natural pozzolan and slag-based geopolymers. Constr. Build. Mater. 111, 337-347. https://doi.org/10.1016/j.conbuildmat.2016.02.086

Robayo-Salazar, R.A.; Mejia de Gutierrez, R.; Puertas, F. (2017) Study of synergy between a natural volcanic pozzolan and a granulated blast furnace slag in the production of geopolymeric pastes and mortars. Constr. Build. Mater. 157, 151-160. https://doi.org/10.1016/j.conbuildmat.2017.09.092

Najimi, M.; Ghafoori, N.; Sharbaf, M. (2018) Alkaliactivated natural pozzolan/slag mortars : A parametric study. Constr. Build. Mater. 164, 625-643. https://doi.org/10.1016/j.conbuildmat.2017.12.222

Fernández-Jiménez, A.; Puertas, F.; Sobrados, I.; Sanz, J. (2003) Structure of Calcium Silicate Hydrates Formed in Alkaline-Activated Slag: Influence of the Type of Alkaline Activator. J. Am. Ceram. Soc. 86, 1389-1394. https://doi.org/10.1111/j.1151-2916.2003.tb03481.x

Puertas, F.; Palacios, M.; Manzano, H.; Dolado, J.S.; Rico, A.; Rodríguez, J. (2011) A model for the C-A-S-H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 31, 2043-2056. https://doi.org/10.1016/j.jeurceramsoc.2011.04.036

Puertas, F. (1995) Cementos de escorias activadas alcalinamente: Situación actual y perspectivas de futuro. Mater. Construcc. 45, 53-64. https://doi.org/10.3989/mc.1995.v45.i239.553

Haddad, R.H.; Alshbuol, O. (2016) Production of geopolymer concrete using natural pozzolan: A parametric study. Constr. Build. Mater. 114, 699-707. https://doi.org/10.1016/j.conbuildmat.2016.04.011

Najimi, M. (2016) Alkali-Activated Natural Pozzolan/ Slag Binder for Sustainable Concrete. UNLV Theses, Dissertations, Professional Papers, and Capstones. 2885. https:// digitalscholarship.unlv.edu/thesesdissertations/2885/

ASTM International (2017) ASTM C1157/C1157M-17, Standard Performance Specification for Hydraulic Cement.

ACI Committee 211 (2002) Standard practice for selecting proportions for normal, heavyweight, and mass concrete (ACI 211.1-91).

Fuller, W.B.; Thomson, S.E. (1907) The Laws of Proportioning Concrete. Trans. Am. Soc. Civ. Eng. ASCE Libr LIX, 67-143.

ASTM International (2015) ASTM C143/C143M-15a, Standard Test Method for Slump of Hydraulic-Cement Concrete.

ASTM International (2018) ASTM C39/C39M-18, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.

ASTM International (2014) ASTM C469/C469M-14, Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression.

ASTM International (2017) ASTM C496/C496M-17, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens.

ASTM International (2016) ASTM C293/C293M-16, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading).

ASTM International (2013) ASTM C642-13, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete.

Ibrahim, M.; Megat Johari, M.A.; Rahman, M.K.; Maslehuddin, M. (2017) Effect of alkaline activators and binder content on the properties of natural pozzolan-based alkali activated concrete. Constr. Build. Mater. 147, 648-660. https://doi.org/10.1016/j.conbuildmat.2017.04.163

Garcia-Lodeiro, I.; Palomo, A.; Fernández-Jiménez, A.; MacPhee, D.E. (2011) Compatibility studies between N-AS- H and C-A-S-H gels. Study in the ternary diagram Na2OCaO- Al2O3-SiO2-H2O. Cem. Concr. Res. 41, 923-931. https://doi.org/10.1016/j.cemconres.2011.05.006

Garcia-Lodeiro, I.; Donatello, S.; Fernández-Jiménez, A.; Palomo, A. (2016) Hydration of hybrid alkaline cement containing a very large proportion of fly ash: A descriptive model. Materials 9,605. https://doi.org/10.3390/ma9070605 PMid:28773728 PMCid:PMC5456877

Ortega, E.A.; Cheeseman, C.; Knight, J.; Loizidou, M. (2000) Properties of alkali-activated clinoptilolite. Cem. Concr. Res. 30, 1641-1646. https://doi.org/10.1016/S0008-8846(00)00331-8

García Lodeiro, I.; Macphee, D.E.; Palomo, A.; Fernández-Jiménez, A. (2009) Effect of alkalis on fresh C-S-H gels. FTIR analysis. Cem. Concr. Res. 39, 147-153. https://doi.org/10.1016/j.cemconres.2009.01.003

García-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A. (2013) Variation in hybrid cements over time. Alkaline activation of fly ash-Portland cement blends. Cem. Concr. Res. 52, 112-122. https://doi.org/10.1016/j.cemconres.2013.03.022

Gebregziabiher, B.S.; Thomas, R.J.; Peethamparan, S. (2016) Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders. Constr. Build. Mater. 113, 783-793. https://doi.org/10.1016/j.conbuildmat.2016.03.098

Sánchez-Herrero, M.J.; Fernández-Jiménez, A.; Palomo, A.; Klein, L. (2016) Alkaline Hydration of C2S and C3S. J. Am. Ceram. Soc. 99, 604-611. https://doi.org/10.1111/jace.13985




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es