Materiales de Construcción, Vol 69, No 335 (2019)
Effects of Design and Construction on the Carbon Footprint of Reinforced Concrete Columns in Residential Buildings
https://doi.org/10.3989/mc.2019.09918
E. Fraile-Garcia
Department of Mechanical Engineering, Structures Construction and Development of
Industrial Processes.SCoDIP Group, University of La Rioja, Spain http://orcid.org/0000-0001-9408-5575
J. Ferreiro-Cabello
Department of Mechanical Engineering, Structures Construction and Development of
Industrial Processes.SCoDIP Group, University of La Rioja, Spain http://orcid.org/0000-0001-6489-0418
F. J. Martínez de Pison
Department of Mechanical Engineering, Engineering Data Mining And Numerical Simulation. EDMANS Group, University of La Rioja, Spain http://orcid.org/0000-0002-3063-7374
A. V. Pernia-Espinoza
Department of Mechanical Engineering, Engineering Data Mining And Numerical Simulation. EDMANS Group, University of La Rioja, Spain http://orcid.org/0000-0001-6227-075X
Abstract
Keywords
References
Galán-Marín, C.; Rivera-Gómez, C.; García-Martínez, A. (2015) Embodied energy of conventional load-bearing walls versus natural stabilized earth blocks. Energy Build. 97, 146-154. https://doi.org/10.1016/j.enbuild.2015.03.054
Park, H.; Kwon B.; Shin Y.; Kim Y.; Hong T.; Choi S. (2013) Cost and CO2 Emission Optimization of Steel Reinforced Concrete Columns in High-Rise Buildings. Energies 6, 5609-5624. https://doi.org/10.3390/en6115609
Ferreiro-Cabello, J.; Fraile-Garcia, E.; Martinez de Pison Ascacibar E.; Martinez de Pison Ascacibar, F. J. (2016) Minimizing greenhouse gas emissions and costs for structures with flat slabs. J. Clean. Prod. 137, 922-930. https://doi.org/10.1016/j.jclepro.2016.07.153
Kripka, M.; Medeiros, G. F.; Fraga, J. L. T.; Marosin, P. R. (2014) Minimizing the environmental impact of R-C structural elements. Eng. Optim. 727-730. https://www. researchgate.net/publication/265597500_Minimizing_the_ environmental_impact_of_R-C_structural_elements https://doi.org/10.1201/b17488-129
Guardigli, L. (2014) Comparing the environmental impact of reinforced concrete and wooden structures. Eco-Efficient Constr. Build. Mater. 49, pp. 407-433. https://doi.org/10.1533/9780857097729.3.407
Xiao, J.; Wang, C.; Ding, T.; Akbarnezhad, A. (2018) A recycled aggregate concrete high-rise building: Structural performance and embodied carbon footprint. J. Clean. Prod. 199, 868-881. https://doi.org/10.1016/j.jclepro.2018.07.210
Zahra S.; Moussavi Nadoushani, A. A. (2015) Effects of structural system on the life cycle carbon footprint of buildings. Energy Build. 1, 337-346. https://doi.org/10.1016/j.enbuild.2015.05.044
Griffin, C. T.; Reed, B.; Hsu, S.; Cruz, P. J. S. (2010) Comparing the embodied energy of structural systems in buildings. Struct. Archit. 1367-1373. https://doi.org/10.1201/b10428-182
Martí, J. V.; García-Segura, T.; Yepes, V. (2016) Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. J. Clean. Prod. 120, 231-240. https://doi.org/10.1016/j.jclepro.2016.02.024
Fraile-Garcia, E.; Ferreiro-Cabello, J.; Martinez-Camara, E.; Jimenez-Macias, E. (2016) Optimization based on life cycle analysis for reinforced concrete structures with one-way slabs. Eng. Struct. 109, 126-138. https://doi.org/10.1016/j.engstruct.2015.12.001
Miller, S. A.; Horvath, A.; Monteiro, P. J. M.; Ostertag, C. P. (2015) Greenhouse gas emissions from concrete can be reduced by using mix proportions, geometric aspects, and age as design factors. Environ. Res. Lett. 10, 114017. https://doi.org/10.1088/1748-9326/10/11/114017
Peng, W.; Sui Pheng, L. (2011) Managing the Embodied Carbon of Precast Concrete Columns. J. Mater. Civ. Eng. 23, 1192-1199. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000287
Hong, W.-K.; Park, S.-C.; Jeong, S.-Y.; Lim, G.-T.; Kim, J.-T. (2012) Evaluation of the Energy Efficiencies of Pre-cast Composite Columns. Indoor Built Environ. 21, 176-183. https://doi.org/10.1177/1420326X11420126
Wu, P.; Pienaar, J.; O'Brien, D. (2013) Developing a lean benchmarking process to monitor the carbon efficiency in precast concrete factories-a case study in Singapore. Coll. Publ. 8, 133-152. https://doi.org/10.3992/jgb.8.2.133
Wu, P. (2014) Monitoring carbon emissions in precast concrete installation through lean production - A case study in Singapore. J. Green Build. 9, 191-211. https://doi.org/10.3992/1943-4618-9.4.191
Oh, B. K.; Park, J. S.; Choi, S. W.; Park, H. S. (2016) Design model for analysis of relationships among CO2 emissions, cost, and structural parameters in green building construction with composite columns. Energy Build. 118, 301-315. https://doi.org/10.1016/j.enbuild.2016.03.015
Choi, S. W.; Oh, B. K.; Park, J. S.; Park, H. S. (2016) Sustainable design model to reduce environmental impact of building construction with composite structures. J. Clean. Prod. 137, 823-832. https://doi.org/10.1016/j.jclepro.2016.07.174
Kripka, M.; de Medeiros, G. F. (2012) Cross-Sectional Optimization of Reinforced Concrete Columns Considering both Economical and Environmental Costs. Appl. Mech. Mater. 193-194, 1086-1089. https://doi.org/10.4028/www.scientific.net/AMM.193-194.1086
Heede, P.; Van den, Maes, M.; Gruyaert, E.; Belie, N. De. (2012) Full probabilistic service life prediction and life cycle assessment of concrete with fly ash and blast-furnace slag in a submerged marine environment: a parameter study. Int. J. Environ. Sustain. Dev. 11, 32. https://doi.org/10.1504/IJESD.2012.049141
García-Segura, T.; Yepes, V.; Alcalá, J. (2014) Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. Int. J. Life Cycle Assess. 19, 3-12. https://doi.org/10.1007/s11367-013-0614-0
Yang, K.-H.; Seo, E.-A.; Choi, D.-U. (2014) Effect of fly ash on lifecycle CO2 assessment of concrete structure. Appl. Mech. Mater. 692. https://doi.org/10.4028/www.scientific.net/AMM.692.475. https://doi.org/10.4028/www.scientific.net/AMM.692.475
Magudeaswaran, P.; Eswaramoorthi, P. (2015) Use of industrial waste materials in sustainable green high-performance reinforced concrete short columns. Int. J. Earth Sci. Eng. 8.
Albitar, M.; Mohamed Ali, M. S.; Visintin, P. (2017) Experimental study on fly ash and lead smelter slag-based geopolymer concrete columns. Constr. Build. Mater. 141, 104-112. https://doi.org/10.1016/j.conbuildmat.2017.03.014
Zhang, Y. F.; Zhao, J. H.; Cai, C. S. (2012) Seismic behavior of ring beam joints between concrete-filled twin steel tubes columns and reinforced concrete beams. Eng. Struct. 39, 1-10. https://doi.org/10.1016/j.engstruct.2012.01.014
Hirade, T.; Odajima, N.; Kimura, H.; Kaneko, H.; Yonezawa, T. (2014) Structural performance of the steel-bar-reinforced concrete-filled circular thin steel tubular columns using high slag cement. J. Struct. Constr. Eng. (Transactions AIJ) 79, 651-660. https://doi.org/10.3130/aijs.79.651
AENOR GlobalEPD Program. Environmental Product Declaration Long steel laminate construction unalloyed hot oven from: corrugated bars. 1-12 (2014).
AENOR GlobalEPD Program. Environmental Product Declaration Cement CEM I. 1-12 (2014).
AENOR GlobalEPD Program. Environmental Product Declaration Cement CEM II. 1-12 (2014).
AENOR GlobalEPD Program. Environmental Product Declaration Cement CEM III. 1-12 (2014).
AENOR GlobalEPD Program. Environmental Product Declaration Cement CEM IV. 1-12 (2014).
AENOR GlobalEPD Program. Environmental Product Declaration Cement CEM V. 1-12 (2014).
Fraile-Garcia, E.; Ferreiro-Cabello, J.; Martinez-Camara, E.; Jimenez-Macias, E. (2015) Adaptation of methodology to select structural alternatives of one-way slab in residential building to the guidelines of the European Committee for Standardization (CEN/TC 350). Environ. Impact Assess. Rev. 55, 144-155. https://doi.org/10.1016/j.eiar.2015.08.004
Yang, K. H.; Jung, Y. B.; Cho, M. S.; Tae, S. H. (2015) Effect of Supplementary Cementitious Materials on Reduction of CO2 Emissions From Concrete. Handb. Low Carbon Concr. 103, 774-783. https://doi.org/10.1016/j.jclepro.2014.03.018
Park, H. S.; Lee, H.; Kim, Y.; Hong, T.; Choi, S. W. (2014) Evaluation of the influence of design factors on the CO2 emissions and costs of reinforced concrete columns. Energy Build. 82, 378-384. https://doi.org/10.1016/j.enbuild.2014.07.038
Jeong, J.; Taehoon H.; Changyoon J.; Jimin K.; Minhyun L.; Kwangbok J.; Seunghwan L. (2017) An integrated evaluation of productivity, cost and CO2 emission between prefabricated and conventional columns. J. Clean. Prod. 142, 2393-2406. https://doi.org/10.1016/j.jclepro.2016.11.035
Li, H.; Deng, Q.; Xia, B.; Zhang, J.; Skitmore, M. (2019) Assessing the life cycle CO2 emissions of reinforced concrete structures: Four cases from China. J. Clean. Prod. 210, 1496-1506. https://doi.org/10.1016/j.jclepro.2018.11.102
Plataforma Tecnologica Española del Hormigón. Hormigón: Un Material Para Aumentar la Sotenibilidad de la Construcción. PTEH (2014). Available at: https://www.ieca.es/publicaciones/. (Accessed: 1st December 2017).
CYPE Ingenieros S.A. CYPE Ingenieros S.A. Software for Architecture, Engineering and Construction. Spain, 2016. (2017).
Ministry of Public Works Spain. Code on Structural Concrete (Spanish abbreviation - EHE-08). (2008).
Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Contact us materconstrucc@ietcc.csic.es
Technical support soporte.tecnico.revistas@csic.es