Materiales de Construcción, Vol 69, No 335 (2019)

Influence of soda-lime waste glass microparticles on workability and thermal properties of portland cement compounds


https://doi.org/10.3989/mc.2019.05818

C. B. C. S. Alvarenga
Universidade Federal de Minas Gerais, Escola de Engenharia (DEE, DEMC, DEMEC), Brazil
orcid http://orcid.org/0000-0002-5309-2020

O. M. Heiderick
Universidade Federal de Minas Gerais, Escola de Engenharia (DEE, DEMC, DEMEC), Brazil
orcid http://orcid.org/0000-0002-5001-1010

T. A. Couto
Cimentos Brennand, Laboratório de Análises, Sete Lagoas, Brazil
orcid http://orcid.org/0000-0003-4139-5849

P. R. Cetlin
Universidade Federal de Minas Gerais, Escola de Engenharia (DEE, DEMC, DEMEC), Brazil
orcid http://orcid.org/0000-0002-8051-062X

R. B. C. Sales
Universidade do Estado de Minas Gerais, Escola de Design (DEPC), Brazil
orcid http://orcid.org/0000-0002-9475-0835

M. T. P. Aguilar
Universidade Federal de Minas Gerais, Escola de Engenharia (DEE, DEMC, DEMEC), Brazil
orcid http://orcid.org/0000-0002-0121-0881

Abstract


Numerous studies have investigated the use of waste glass as a partial substitution in Portland cement. Nonetheless, it seems there is no consensus about the influence of particle size and color on the behavior of the compounds. This work investigates the influence of soda-lime glass microparticles on the properties of cement and mortar in both fresh and hardened states. The effects of partial substitution (10 and 20%) of the cement by colorless and amber glass particles with dimensions of approximately 9.5 mm were investigated. The results revealed that the substitutions did not significantly affect the setting times, nor the mechanical properties of mortar at longer curing times. The influence of glass content and chemical composition on workability and hydration heat was also observed. The waste glass samples showed lower thermal diffusivity than the control sample. Thermal emissivity was not influenced by the presence of glass microparticles.

Keywords


Portland cement; Glass; Mortar; Fresh concrete; Mechanical properties; Transport properties

Full Text:


HTML PDF XML

References


Abravidro (2018) AssociaÁ"o Brasileira de Distribuidores e Processadores de Vidros Planos. Panorama Abravido, 2018. Marita Martins. BrasÌlia, (2018). Available in: https://pdf.magtab.com/leitor/136/edicao/18702.

Cempre. (2017) Compromisso empresarial para reciclagem. Available in: www.cempre.org.br.

Torres-Carrasco, M.; Puertas, F. (2015) Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation. J. Clean. Prod. 90, 397-408. https://doi.org/10.1016/j.jclepro.2014.11.074

Arulrajah, A. Kua, T.A.; Horpibulsuk, S.; Phetchuay, C.; Suksiripattanapong, C.; Dud, Y. J. (2016) Strength and microstructure evaluation of recycled glass-fly ash geopolymer as low-carbon masonry units. Construc. Build. Mat. 114, 400-406. https://doi.org/10.1016/j.conbuildmat.2016.03.123

Cyr, M.; Idir, R.; Poinot, T. (2012) Properties of inorganic polymer (geopolymer) mortars made of glass cullet. J. Mater. Sci. 47, 2782-2797. https://doi.org/10.1007/s10853-011-6107-2

Jani, Y.; Hogland, W. (2014) Waste glass in the production of cement and concrete: a review. J. Environ. Chem. Eng. 2, 1767-1775. https://doi.org/10.1016/j.jece.2014.03.016

Tariq, S.; Scott, A.; Mackechnie, J. (2016). Controlling Fresh Properties of Self-Compacting Concrete Containing Waste Glass Powder and its Influence on Strength and Permeability. In 4th International Conference on Sustainable Construction Materials and Technologies. August 2016. Las Vegas, USA.

Du, H.; Tan, K.H. (2017) Properties of high volume glass powder concrete. Cem. Concr. Comp. 75, 22-29. https://doi.org/10.1016/j.cemconcomp.2016.10.010

Omrana, A.; Harbec, D.; Tagnit-Hamoua, A; Gagne, R. (2017) Production of roller-compacted concrete using glass powder: Field study. Construc. Build. Mat. 133, 450-458. https://doi.org/10.1016/j.conbuildmat.2016.12.099

Omrana, A F, Morina, ED, Harbec, D, Tagnit-Hamoua, A (2017) Long-term performance of glass-powder concrete in large-scale field applications. Construc. Build. Mat. 135, 43-58. https://doi.org/10.1016/j.conbuildmat.2016.12.218

Mohajerani, A.J.; Cheung, T.H.H.; Kurmus, H.; Arulrajah, A.; Horpibulsuk, S. (2017) Practical recycling applications of crushed waste glass in construction materials: a review. Construc. Build. Mat. 156, 443-467. https://doi.org/10.1016/j.conbuildmat.2017.09.005

Dumitru, I.; Song, T.; Caprar, V.; Brooks, P.; Moss, J. (2010) Incorporation of recycled glass for durable concrete. In 2nd International Conference on Sustainable Construction Materials and Technologies, June 2010. Ancona, Italy.

Serpa, D.; Silva, A.; Brito, J.; Pontes, J.; Soares, D. (2013). ASR of mortars containing glass. Constr. Build. Mater. 47, 489-495. https://doi.org/10.1016/j.conbuildmat.2013.05.058

Du, H.; Tan, K. (2013) Use of waste glass as sand in mortar: Part II - Alkali-silica reaction and mitigation methods. Cem. Concr. Comp. 35(1), 118-126. https://doi.org/10.1016/j.cemconcomp.2012.08.029

Kamali, M.; Ghahremaninezhad, A. (2015) Effect of glass powders on the mechanical and durability properties of cementitious materials. Construc. Build. Mat. 98, 407-416. https://doi.org/10.1016/j.conbuildmat.2015.06.010

Lee, H.; Hanif A; Usmand, M.; Sim, J.; Oh, H. (2018) Performance evaluation of concrete incorporating glass powder and glass sludge wastes as supplementary cementing material. J. Clean. Prod. 170, 683-693. https://doi.org/10.1016/j.jclepro.2017.09.133

Kamali, M.; Ghahremaninezhad, A. (2016) An investigation into the hydration and microstructure of cement pastes modified with glass powders. Construc. Build. Mat. 112, 915-924. https://doi.org/10.1016/j.conbuildmat.2016.02.085

Aliabdo, A.A.; Elmoaty, A.; Aboshama, A.Y. (2016) Utilization of waste glass powder in the production of cement and concrete. Construc. Build. Mat. 124, 866-877. https://doi.org/10.1016/j.conbuildmat.2016.08.016

Calmon, J.; Sauer, A.; Vieira, G.; Teixeira, J. (2014) Effects of windshield waste glass on the properties of structural repair mortars. Cem. Concr. Comp. 53, 88-96. https://doi.org/10.1016/j.cemconcomp.2014.04.008

Rodier, L.; Savastano, S. (2018) Use of glass powder residue for the elaboration of eco-efficient cementitious materials. J. Clean. Prod. 184, 333-341. https://doi.org/10.1016/j.jclepro.2018.02.269

Islama, G.M.S.; Rahmanb, M.H.; Kazia, N. (2017) Waste glass powder as partial replacement of cement for sustainable concrete practice. J. Sustain. Built Environ. 37-44. . https://doi.org/10.1016/j.ijsbe.2016.10.005

Bignozzia, M.C.; Saccania, A.; Barbieri, L.; Lancellotti, I. (2015) Glass waste as supplementary cementing materials: The effects of glass chemical composition. Cem. Concr. Compos. 55, 45-52. https://doi.org/10.1016/j.cemconcomp.2014.07.020

Raverdy, M.; Brivot, F.; PaillËre, A.; Dron, R.; (1980) ApprÈciation de l activitÈ pouzzolanique des constituants secondaires. In 7th International Congress on the Chemistry of Cement. June/July 1980. Paris, France.

Luxán, M.; Madruga, F.; Saavedra, J. (1989) Rapid evaluation of pozzolanic activity of natural products by conductivity measurement. Cem. Concr. Res. 19, 63-68. https://doi.org/10.1016/0008-8846(89)90066-5

ASTM C311-07 (2007) Standard test methods for sampling and testing fly ash or natural pozzolans for use in Portland cement concrete. Book of Standards. West Conshohocken, PA.

ASTM C191-99 (2001) Standard test method for time of setting of hydraulic cement by Vicat Needle. Book of Standards. West Conshohocken, PA.

ASTM C1567-08 (2008) Standard Test Method for Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials and Aggregate. Accelerated Mortar-Bar Method. Book of Standards. West Conshohocken PA.

EN 196-3 (2016) Methods of Testing Cement - Part 3: Determination of Setting Times and Soundness. European Committee for Standardization (CEN), Brussels.

ASTM C230-99 (1999) Standard specification for flow table for use in tests of hydraulic cement. West Conshohocken, PA.

RILEM TC116-PCD (1999) Tests for gas permeability of concrete. Materials and Structures. RILEM Technical Committees.

ASTM C39M-15 (2015) Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken, PA.

ASTM C78M-15 (2015) Standard test method for flexural strength of concrete (using simple beam with third-point loading). West Conshohocken, PA.

ASTM C215-97 (1997) Standard test method for fundamental transverse, longitudinal, and torsional frequencies of concrete specimens. West Conshohocken, PA.

Chikhalikar, S.; Tande, S. (2012) An experimental investigation on characteristic properties of fibre reinforced concrete containing waste glass powder as pozzolana. In 37th Conference on Our World in Concrete & Structures, August 2012. Singapore, Asia.

Mehta, P.; Monteiro, P. (2014) Concrete: Microstructure, properties, and materials. McGraw-Hill. New York.

Incropera, F.P.; De Witt, D.P.; Bergman, T.L.; Arianne, S.L. (2017) Incropera2 s Principles of Heat and Mass Transfer. Wiley & Sons.

Feng, J.; Chen, D.; Ni, W.; Yang, S.; Hu, Z. (2010). Study of Ir absorption properties of fumed silicaopacifier composites. J. Non. Cryst. Solids. 480-483. https://doi.org/10.1016/j.jnoncrysol.2009.12.015




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es