Materiales de Construcción, Vol 69, No 335 (2019)

Damage behaviours of concrete and prediction models under the joint effect of freeze–thaw attack and ultraviolet radiation


https://doi.org/10.3989/mc.2019.12018

R. J. Wang
State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi’an University of Technology, China
orcid http://orcid.org/0000-0002-4421-6765

R. Qin
State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi’an University of Technology, China
orcid http://orcid.org/0000-0003-0343-1167

Y. Li
State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi’an University of Technology, China
orcid http://orcid.org/0000-0002-6001-758X

J. X. Li
College of Civil and Environmental Engineering, University of New South Wales, Australia
orcid http://orcid.org/0000-0002-4489-5489

C. Zhang
State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi’an University of Technology, China
orcid http://orcid.org/0000-0002-0865-3191

Abstract


The study investigated the joint effect of freeze–thaw attack and ultraviolet (UV) radiation on concrete. Mass loss ratio, relative dynamic modulus of elasticity (RDME) and flexural strength of concrete were experimentally investigated. A two-way ANOVA was used to analyse the effect of UV radiation on the test results. Water–binder ratio significantly affected the mass loss ratio, RDME and flexural strength. Meanwhile, UV radiation only had a significant effect on mass loss ratio but had no evident effect on RDME and flexural strength. Concrete microstructure was demonstrated by microscopic analysis via scanning electron microscope to explore the insight into the damage evolution of concrete under the joint effect. Prediction models of the damage degree of concrete were proposed by incorporating the results in this investigation. Comparison results showed that the prediction values were consistent with the experimental values.

Keywords


Concrete; Freezing/thawing; Scanning Electron Microscopy (SEM); Durability; Flexural strength

Full Text:


HTML PDF XML

References


Tang, S.W.; Yao, Y.; Andrade, C.; Li, Z.J. (2015) Recent durability studies on concrete structure. Cem. Concr. Res. 78, 143-154. https://doi.org/10.1016/j.cemconres.2015.05.021

Zhang, X.H.; Wang, L.; Zhang, J.R. (2017) Mechanical behavior and chloride penetration of high strength concrete under freeze-thaw attack. Cold Reg. Sci. Tech. 142, 17-24. https://doi.org/10.1016/j.coldregions.2017.07.004

Hanjari, K.Z.; Utgenannt, P.; Lundgren, K. (2011) Experimental study of the material and bond properties of frost-damaged concrete. Cem. Concr. Res. 41 [3], 244-254. https://doi.org/10.1016/j.cemconres.2010.11.007

Ebrahimi, K.; Daiezadeh, M.J.; Zakertabrizi, M.; Zahmatkesh, F.; Korayem, A.H. (2018) A review of the impact of micro- and nanoparticles on freeze-thaw durability of hardened concrete: Mechanism perspective. Constr. Build. Mater. 186, 1105-1113. https://doi.org/10.1016/j.conbuildmat.2018.08.029

Litvan, G.G. (1972) Phase transitions of adsorbates: IV, mechanism of frost action in hardened cement paste. J. Am. Ceram. Soc. 55 [1], 38-42. https://doi.org/10.1111/j.1151-2916.1972.tb13393.x

Collins. A. (1944) The destruction of concrete by frost. J. Inst. Civ. Eng. 23 [1], 29-41. https://doi.org/10.1680/ijoti.1944.14086

Qin, X.C.; Meng, S.P.; Cao, D.F.; Tu, Y.M.; Sabourova, N.; Grip, N.; Ohlsson, U.; Blanksvärd, T.; Sas, G.; Elfgren, L. (2016) Evaluation of freeze-thaw damage on concrete material and prestressed concrete specimens. Constr. Build. Mater. 125, 892-904. https://doi.org/10.1016/j.conbuildmat.2016.08.098

Tuyan, M.; Mardani-Aghabaglou, A.; Ramyar, K. (2014) Freeze-thaw resistance, mechanical and transport properties of self-consolidating concrete incorporating coarse recycled concrete aggregate. Mater. Des. 53, 983-991. https://doi.org/10.1016/j.matdes.2013.07.100

Sun, Z.H.; Scherer, G.W. (2010) Effect of air voids on salt scaling and internal freezing. Cem. Concr. Res. 40 [2], 260-270. https://doi.org/10.1016/j.cemconres.2009.09.027

Cavdar, A. (2014) Investigation of freeze-thaw effects on mechanical properties of fiber reinforced cement mortars. Compos. Pt. B-Eng. 58, 463-472. https://doi.org/10.1016/j.compositesb.2013.11.013

Li, Y.; Wang, R.J.; Li, S.Y. Zhao, Y; Qin, Y. (2018) Resistance of recycled aggregate concrete containing low- and high-volume fly ash against the combined action of freeze-thaw cycles and sulfate attack. Constr. Build. Mater. 166, 23-34. https://doi.org/10.1016/j.conbuildmat.2018.01.084

Wang, D.Z.; Zhou, X.M.; Meng, Y.F.; Chen, Z. (2017) Durability of concrete containing fly ash and silica fume against combined freezing-thawing and sulfate attack. Constr. Build. Mater. 147, 398-406. https://doi.org/10.1016/j.conbuildmat.2017.04.172

Yang, H.Q.; Shen, X.M.; Rao, M.J.; Li, X.; Wang, X.D. (2015) Influence of alternation of sulfate attack and freeze-thaw on microstructure of concrete. Adv. Mater. Sci. Eng. 1, 1-7. https://doi.org/10.1155/2015/859069

Wang, J.B.; Niu, D.T. (2016) Influence of freeze-thaw cycles and sulfate corrosion resistance on shotcrete with and without steel fiber. Constr. Build. Mater. 122, 628-636. https://doi.org/10.1016/j.conbuildmat.2016.06.100

Piasta, W.; Marczewska, J.; Jaworska, M. (2015) Durability of air entrained cement mortars under combined sulphate and freeze-thaw attack. Procedia Eng. 108, 55-62. https://doi.org/10.1016/j.proeng.2015.06.119

Tian, J.; Wang, W.W.; Du, Y.F. (2016) Damage behaviors of self-compacting concrete and prediction model under coupling effect of salt freeze-thaw and flexural load. Constr. Build. Mater. 119, 241-250. https://doi.org/10.1016/j.conbuildmat.2016.05.073

Kosior-Kazberuk, M.; Berkowski, P. (2017) Surface scaling resistance of concrete subjected to freeze-thaw cycles and sustained load. Procedia Eng. 172, 513-520. https://doi.org/10.1016/j.proeng.2017.02.060

Diao, B.; Sun, Y.; Cheng, S.H.; Eng., P.; Ye, Y.H. (2011) Effects of mixed corrosion, freeze-thaw cycles, and persistent loads on behavior of reinforced concrete beams. J. Cold Reg. Eng. 25 [1], 37-52. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000019

Enfedaque, A.; Romero, H.L.; Gálvez, J.C. (2014) Fracture energy evolution of two concretes resistant to the action of freeze-thaw cycles. Mater. Constr. 64 [313], 60-71. https://doi.org/10.3989/mc.2014.00813

Lu, J.Z.; Zhu, K.F.; Tian, L.Z.; Guo, L. (2017) Dynamic compressive strength of concrete damaged by fatigue loading and freeze-thaw cycling. Constr. Build. Mater. 152, 847-855. https://doi.org/10.1016/j.conbuildmat.2017.07.046

Wang, Z.D.; Zeng, Q.; Wang, L.; Yao, Y.; Li, K.F. (2014) Corrosion of rebar in concrete under cyclic freeze-thaw and chloride salt action. Constr. Build. Mater. 53, 40-47. https://doi.org/10.1016/j.conbuildmat.2013.11.063

Jacobsen, S.; Marchand, J.; Boisvert, L. (1996) Effect of cracking and healing on chloride transport in OPC concrete. Cem. Concr. Res. 26 [6], 869-881. https://doi.org/10.1016/0008-8846(96)00072-5

Zhang, P.; Cong, Y.; Vogel, M.; Liu, Z.L.; Müller, H.S.; Zhu, Y.G.; Zhao, T.J. (2017) Steel reinforcement corrosion in concrete under combined actions: The role of freeze-thaw cycles, chloride ingress, and surface impregnation. Constr. Build. Mater. 148, 113-121. https://doi.org/10.1016/j.conbuildmat.2017.05.078

Kuosa, H. Ferreira, R.M.; Holt, E.; Leivo, M.; Vesikari, E. (2014) Effect of coupled deterioration by freeze-thaw, carbonation and chlorides on concrete service life. Cem. Concr. Compos. 47, 32-40. https://doi.org/10.1016/j.cemconcomp.2013.10.008

He, Z.; Tang, S.W.; Zhao, G.S.; Chen, E. (2016) Comparison of three and one dimensional attacks of freeze-thaw and carbonation for concrete samples. Constr. Build. Mater. 127, 596-606. https://doi.org/10.1016/j.conbuildmat.2016.09.069

Liu, F.; You, Z.P.; Yang, X.; Wang, H.N. (2018) Macro-micro degradation process of fly ash concrete under alternation of freeze-thaw cycles subjected to sulfate and carbonation. Constr. Build. Mater. 181, 369-380. https://doi.org/10.1016/j.conbuildmat.2018.06.037

Ge, X.; Ge, Y.; Du, Y. B.; Cai, X. P. (2017) Effect of low air pressure on mechanical properties and shrinkage of concrete. Mag. Concr. Res. 70 [18], 1-12. https://doi.org/10.1680/jmacr.17.00305

Güllü, H. (2015) On the viscous behavior of cement mixtures with clay, sand, lime and bottom ash for jet grouting. Constr. Build. Mater. 93, 891-910. https://doi.org/10.1016/j.conbuildmat.2015.05.072

Cui, W.; Huang, J.Y.; Song, H.F.; Xiao, M. (2017) Development of two new anti-washout grouting materials using multi-way ANOVA in conjunction with grey relational analysis. Constr. Build. Mater. 156, 184-198. https://doi.org/10.1016/j.conbuildmat.2017.08.126

Li, C.Z.; Jiang, L.H.; Xu, N.; Jiang S.B. (2018) Pore structure and permeability of concrete with high volume of limestone powder addition. Powder Technol. 338, 416-424. https://doi.org/10.1016/j.powtec.2018.07.054

Ma, H.X.; Yu, H.F.; Li, C.; Tan, Y.S.; Cao, W.T.; Da, Bo. (2018) Freeze-thaw damage to high-performance concrete with synthetic fibre and fly ash due to ethylene glycol deicer. Constr. Build. Mater. 187, 197-204. https://doi.org/10.1016/j.conbuildmat.2018.07.189

Wongpa, J.; Kiattikomol, K.; Jaturapitakkul, C.; Chindaprasirt, P. (2010) Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete. Mater. Des. 31 [10], 4748-4754. https://doi.org/10.1016/j.matdes.2010.05.012

Jiang, L.; Niu, D.T.; Yuan, L.D.; Fei, Q.N. (2015) Durability of concrete under sulfate attack exposed to freeze-thaw cycles. Cold Reg. Sci. Tech. 112, 112-117. https://doi.org/10.1016/j.coldregions.2014.12.006




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es