Materiales de Construcción, Vol 69, No 335 (2019)

Damage behaviours of concrete and prediction models under the joint effect of freeze–thaw attack and ultraviolet radiation

R. J. Wang
State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi’an University of Technology, China

R. Qin
State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi’an University of Technology, China

Y. Li
State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi’an University of Technology, China

J. X. Li
College of Civil and Environmental Engineering, University of New South Wales, Australia

C. Zhang
State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi’an University of Technology, China


The study investigated the joint effect of freeze–thaw attack and ultraviolet (UV) radiation on concrete. Mass loss ratio, relative dynamic modulus of elasticity (RDME) and flexural strength of concrete were experimentally investigated. A two-way ANOVA was used to analyse the effect of UV radiation on the test results. Water–binder ratio significantly affected the mass loss ratio, RDME and flexural strength. Meanwhile, UV radiation only had a significant effect on mass loss ratio but had no evident effect on RDME and flexural strength. Concrete microstructure was demonstrated by microscopic analysis via scanning electron microscope to explore the insight into the damage evolution of concrete under the joint effect. Prediction models of the damage degree of concrete were proposed by incorporating the results in this investigation. Comparison results showed that the prediction values were consistent with the experimental values.


Concrete; Freezing/thawing; Scanning Electron Microscopy (SEM); Durability; Flexural strength

Full Text:



Tang, S.W.; Yao, Y.; Andrade, C.; Li, Z.J. (2015) Recent durability studies on concrete structure. Cem. Concr. Res. 78, 143-154.

Zhang, X.H.; Wang, L.; Zhang, J.R. (2017) Mechanical behavior and chloride penetration of high strength concrete under freeze-thaw attack. Cold Reg. Sci. Tech. 142, 17-24.

Hanjari, K.Z.; Utgenannt, P.; Lundgren, K. (2011) Experimental study of the material and bond properties of frost-damaged concrete. Cem. Concr. Res. 41 [3], 244-254.

Ebrahimi, K.; Daiezadeh, M.J.; Zakertabrizi, M.; Zahmatkesh, F.; Korayem, A.H. (2018) A review of the impact of micro- and nanoparticles on freeze-thaw durability of hardened concrete: Mechanism perspective. Constr. Build. Mater. 186, 1105-1113.

Litvan, G.G. (1972) Phase transitions of adsorbates: IV, mechanism of frost action in hardened cement paste. J. Am. Ceram. Soc. 55 [1], 38-42.

Collins. A. (1944) The destruction of concrete by frost. J. Inst. Civ. Eng. 23 [1], 29-41.

Qin, X.C.; Meng, S.P.; Cao, D.F.; Tu, Y.M.; Sabourova, N.; Grip, N.; Ohlsson, U.; Blanksvärd, T.; Sas, G.; Elfgren, L. (2016) Evaluation of freeze-thaw damage on concrete material and prestressed concrete specimens. Constr. Build. Mater. 125, 892-904.

Tuyan, M.; Mardani-Aghabaglou, A.; Ramyar, K. (2014) Freeze-thaw resistance, mechanical and transport properties of self-consolidating concrete incorporating coarse recycled concrete aggregate. Mater. Des. 53, 983-991.

Sun, Z.H.; Scherer, G.W. (2010) Effect of air voids on salt scaling and internal freezing. Cem. Concr. Res. 40 [2], 260-270.

Cavdar, A. (2014) Investigation of freeze-thaw effects on mechanical properties of fiber reinforced cement mortars. Compos. Pt. B-Eng. 58, 463-472.

Li, Y.; Wang, R.J.; Li, S.Y. Zhao, Y; Qin, Y. (2018) Resistance of recycled aggregate concrete containing low- and high-volume fly ash against the combined action of freeze-thaw cycles and sulfate attack. Constr. Build. Mater. 166, 23-34.

Wang, D.Z.; Zhou, X.M.; Meng, Y.F.; Chen, Z. (2017) Durability of concrete containing fly ash and silica fume against combined freezing-thawing and sulfate attack. Constr. Build. Mater. 147, 398-406.

Yang, H.Q.; Shen, X.M.; Rao, M.J.; Li, X.; Wang, X.D. (2015) Influence of alternation of sulfate attack and freeze-thaw on microstructure of concrete. Adv. Mater. Sci. Eng. 1, 1-7.

Wang, J.B.; Niu, D.T. (2016) Influence of freeze-thaw cycles and sulfate corrosion resistance on shotcrete with and without steel fiber. Constr. Build. Mater. 122, 628-636.

Piasta, W.; Marczewska, J.; Jaworska, M. (2015) Durability of air entrained cement mortars under combined sulphate and freeze-thaw attack. Procedia Eng. 108, 55-62.

Tian, J.; Wang, W.W.; Du, Y.F. (2016) Damage behaviors of self-compacting concrete and prediction model under coupling effect of salt freeze-thaw and flexural load. Constr. Build. Mater. 119, 241-250.

Kosior-Kazberuk, M.; Berkowski, P. (2017) Surface scaling resistance of concrete subjected to freeze-thaw cycles and sustained load. Procedia Eng. 172, 513-520.

Diao, B.; Sun, Y.; Cheng, S.H.; Eng., P.; Ye, Y.H. (2011) Effects of mixed corrosion, freeze-thaw cycles, and persistent loads on behavior of reinforced concrete beams. J. Cold Reg. Eng. 25 [1], 37-52.

Enfedaque, A.; Romero, H.L.; Gálvez, J.C. (2014) Fracture energy evolution of two concretes resistant to the action of freeze-thaw cycles. Mater. Constr. 64 [313], 60-71.

Lu, J.Z.; Zhu, K.F.; Tian, L.Z.; Guo, L. (2017) Dynamic compressive strength of concrete damaged by fatigue loading and freeze-thaw cycling. Constr. Build. Mater. 152, 847-855.

Wang, Z.D.; Zeng, Q.; Wang, L.; Yao, Y.; Li, K.F. (2014) Corrosion of rebar in concrete under cyclic freeze-thaw and chloride salt action. Constr. Build. Mater. 53, 40-47.

Jacobsen, S.; Marchand, J.; Boisvert, L. (1996) Effect of cracking and healing on chloride transport in OPC concrete. Cem. Concr. Res. 26 [6], 869-881.

Zhang, P.; Cong, Y.; Vogel, M.; Liu, Z.L.; Müller, H.S.; Zhu, Y.G.; Zhao, T.J. (2017) Steel reinforcement corrosion in concrete under combined actions: The role of freeze-thaw cycles, chloride ingress, and surface impregnation. Constr. Build. Mater. 148, 113-121.

Kuosa, H. Ferreira, R.M.; Holt, E.; Leivo, M.; Vesikari, E. (2014) Effect of coupled deterioration by freeze-thaw, carbonation and chlorides on concrete service life. Cem. Concr. Compos. 47, 32-40.

He, Z.; Tang, S.W.; Zhao, G.S.; Chen, E. (2016) Comparison of three and one dimensional attacks of freeze-thaw and carbonation for concrete samples. Constr. Build. Mater. 127, 596-606.

Liu, F.; You, Z.P.; Yang, X.; Wang, H.N. (2018) Macro-micro degradation process of fly ash concrete under alternation of freeze-thaw cycles subjected to sulfate and carbonation. Constr. Build. Mater. 181, 369-380.

Ge, X.; Ge, Y.; Du, Y. B.; Cai, X. P. (2017) Effect of low air pressure on mechanical properties and shrinkage of concrete. Mag. Concr. Res. 70 [18], 1-12.

Güllü, H. (2015) On the viscous behavior of cement mixtures with clay, sand, lime and bottom ash for jet grouting. Constr. Build. Mater. 93, 891-910.

Cui, W.; Huang, J.Y.; Song, H.F.; Xiao, M. (2017) Development of two new anti-washout grouting materials using multi-way ANOVA in conjunction with grey relational analysis. Constr. Build. Mater. 156, 184-198.

Li, C.Z.; Jiang, L.H.; Xu, N.; Jiang S.B. (2018) Pore structure and permeability of concrete with high volume of limestone powder addition. Powder Technol. 338, 416-424.

Ma, H.X.; Yu, H.F.; Li, C.; Tan, Y.S.; Cao, W.T.; Da, Bo. (2018) Freeze-thaw damage to high-performance concrete with synthetic fibre and fly ash due to ethylene glycol deicer. Constr. Build. Mater. 187, 197-204.

Wongpa, J.; Kiattikomol, K.; Jaturapitakkul, C.; Chindaprasirt, P. (2010) Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete. Mater. Des. 31 [10], 4748-4754.

Jiang, L.; Niu, D.T.; Yuan, L.D.; Fei, Q.N. (2015) Durability of concrete under sulfate attack exposed to freeze-thaw cycles. Cold Reg. Sci. Tech. 112, 112-117.

Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support