Materiales de Construcción, Vol 69, No 336 (2019)

Influence of different sources of coal gangue used as aluminosilicate powder on the mechanical properties and microstructure of alkali-activated cement


https://doi.org/10.3989/mc.2019.12618

B. J. Frasson
Civil Engineering Department, ValoRes Waste Materials and Development of Sustainable Materials Laboratory, Federal University of Santa Catarina, Brazil
orcid http://orcid.org/0000-0002-1074-0518

R. C.A. Pinto
Civil Engineering Department, ValoRes Waste Materials and Development of Sustainable Materials Laboratory, Federal University of Santa Catarina, Brazil
orcid http://orcid.org/0000-0002-0479-080X

J. C. Rocha
Civil Engineering Department, ValoRes Waste Materials and Development of Sustainable Materials Laboratory, Federal University of Santa Catarina, Brazil
orcid http://orcid.org/0000-0003-1074-3230

Abstract


Coal mining wastes are associated with serious environmental problems; they have potential as building materials, including alkali-activated cement. In this study, the effect of different coal mining wastes on the mechanical properties and microstructural development of alkali-activated materials (AAMs) was evaluated through XRD, SEM and FTIR spectroscopy. Different alkali-activated compounds were produced; the alkaline solution was composed of NaOH+Na2SiO3. The results obtained using the calcined coal sludge showed excellent mechanical performance, with compressive strength higher than 60 MPa. However, addition of metakaolin and ordinary Portland cement was necessary to increase the mechanical performance of calcined coal gangue materials. The formation of N-A-S-H gel and the incorporation of iron ions into the cementitious matrix were evidenced. Ultrasonic pulse velocity indicated the early polymerization during the reaction processes. The study verified that the different characteristics of the wastes influence the performance of alkali-activated materials.

Keywords


Alkali-activated cement; Cement paste; Microstructure; Mechanical properties; Physical properties

Full Text:


HTML PDF XML

References


https://www.iea.org

https://www.worldcoal.org

Simate, G. S.; Ndlovu, S. (2014) Acid mine drainage: challenges and opportunities. J. Environ. Chem. Eng. 2 [3], 1785-1803. https://doi.org/10.1016/j.jece.2014.07.021

Kefeni, K. K.; Msagati, T.A.M.; Mamba, B.B. (2017) Acid mine drainage: prevention, treatment options, and resource recovery. J. Clean. Prod. 151, 475-493. https://doi.org/10.1016/j.jclepro.2017.03.082

Querol, X.; Izquierdo, M.; Monfort, E.; Alvarez, E.; Font, O.; Moreno, T.; Alastuey, A.; Zhuang, X.; Lu, W.; Wang, Y. (2008) Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China. Int. J. Coal. Geol. 75 [2], 93-104. https://doi.org/10.1016/j.coal.2008.04.003

Gong, C.; Li, D.; Wang, X.; Li, Z. (2007) Activity and structure of calcined coal gangue. J. Wuhan University of Technol-mater. 22 [4], 749-753. https://doi.org/10.1007/s11595-006-4749-8

Cao, Z.; Cao, Y.; Dong, H.; Zhang, J.; Sun, C. (2016) Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue. Int. Miner. Process. 146, 23-28. https://doi.org/10.1016/j.minpro.2015.11.008

Cutruneo, C. M. N. L.; Oliveira, M. L.S.; Ward, C. R.; Hower, J. C.; de Brum, I. A.S.; Sampaio, C. H.; Kautzmann, R. M.; Taffarel, S. R.; Teixeira, E. C.; Silva, L. F. O. (2014) A mineralogical and geochemical study of three Brazilian coal cleaning rejects: Demonstration of electron beam applications. Int. J. Coal Geol. 130, 33-52. https://doi.org/10.1016/j.coal.2014.05.009

Cheng, Y.; Hongqiang, M.; Hongyu, C.; Jiaxin, W.; Jing, S.; Zonghui, L.; Mingkai, Y. (2018) Preparation and characterization of coal gangue geopolymers. Constr. Build. Mater. 187, 318-326. https://doi.org/10.1016/j.conbuildmat.2018.07.220

FrÌas, M.; La Villa, R. V.; Rojas, M. S.; Medina, C.; Juan ValdÈs, A. (2012) Scientific aspects of kaolinite based coal mining wastes in Pozzolan/Ca(OH)2 System. J. Am. Ceram. Soc. 95 [1], 386-391. https://doi.org/10.1111/j.1551-2916.2011.04985.x

Dong, Z.; Xia, J.; Fan, C.; Cao, J. (2015) Activity of calcined coal gangue fine aggregate and its effect on the mechanical behavior of cement mortar. Constr. Build. Mater. 100, 63-69. https://doi.org/10.1016/j.conbuildmat.2015.09.050

GarcÌa, R.; Vigil de La Villa, R.; FrÌas, M.; Rodriguez, O.; MartÌnez-RamÌrez, S.; Fern·ndez-Carrasco, L.; de Soto, I. S.; Villar-CociÒa, E. (2015) Mineralogical study of calcined coal waste in a pozzolan/Ca(OH)2 system. Appl. Clay Sci. 108, 45-54. https://doi.org/10.1016/j.clay.2015.02.014

Gao, Y.; Huang, H.; Tang, W.; Liu, X.; Yang, X.; Zhang, J. (2015) Preparation and characterization of a novel porous silicate material from coal gangue. Micropor. Mesopor. Mater. 217, 210-218. https://doi.org/10.1016/j.micromeso.2015.06.033

Frías, M.; Sanchez de Rojas, M. I.; García, R.; Juan Valdés, A.; Medina, C. (2012) Effect of activated coal mining wastes on the properties of blended cement. Cem. Concr. Compos. 34 [5], 678-683. https://doi.org/10.1016/j.cemconcomp.2012.02.006

Li, C.; Wan, J.; Sun, H.; Li, L. (2010) Investigation on the activation of coal gangue by a new compound method. J. Hazard Mater. 179 [1 3], 515-520. https://doi.org/10.1016/j.jhazmat.2010.03.033 PMid:20359819

Taha, Y.; Benzaazoua, M.; Hakkou, R.; Mansori, M. (2017) Coal mine wastes recycling for coal recovery and eco-friendly bricks production. Miner. Eng. 107, 123-138. https://doi.org/10.1016/j.mineng.2016.09.001

Zhou, C.; Liu, G.; Wu, S.; Lam, P. K. S. (2014) The environmental characteristics of usage of coal gangue in bricking- making: a case study at Huainan, China. Chemosphere. 95, 274-280. https://doi.org/10.1016/j.chemosphere.2013.09.004 PMid:24103437

Huang, G.; Ji, Y.; Li, J.; Hou, Z.; Dong, Z. (2018) Improving strength of calcinated coal gangue geopolymer mortars via increasing calcium content. Constr. Build. Mater. 166, 760-768. https://doi.org/10.1016/j.conbuildmat.2018.02.005

Geng, J.; Zhou, M.; Li, Y.; Chen, Y.; Han, Y.; Wan, S.; Zhou, X.; Hou, H. (2017) Comparison of red mud and coal gangue blended geopolymers synthesized through thermal activation and mechanical grinding preactivation. Constr. Build. Mater. 153, 185-192. https://doi.org/10.1016/j.conbuildmat.2017.07.045

Duan, Y.; Wang, P. (2008) Early hydration of the material of alkali-activated coal gangue. J. Mater. Sci. Eng. 4 [26], 511-515.

Shi, C.; Fern·ndez-JimÈnez, A.; Palomo, A. (2011) New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 41 [7], 750-763. https://doi.org/10.1016/j.cemconres.2011.03.016

Khale, D.; Chaudhary, R. (2007) Mechanism of geopolymerization and factors influencing its development: a review. J. Mater. Sci. 42 [3], 729-746. https://doi.org/10.1007/s10853-006-0401-4

RovnanÌk, P. (2010) Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 24 [7], 1176-1183. https://doi.org/10.1016/j.conbuildmat.2009.12.023

Aydin, S.; Baradan, B. (2014) Effect of activator type and content on properties of alkali-activated slag mortars. Compos. Part B: Eng. 57, 166-172. https://doi.org/10.1016/j.compositesb.2013.10.001

Samson, G.; Cyr, M.; Gao, X. (2017) Formulation and characterization of blended alkali-activated materials based on flash-calcined metakaolin, fly ash and GGBS. Constr. Build. Mater. 144, 50-64. https://doi.org/10.1016/j.conbuildmat.2017.03.160

Bignozzi, M. C.; Manzi, S.; Lancellotti, I.; Kamseu, E.; Barbieri, L.; Leonelli, C. (2013) Mix-design and characterization of alkali-activated materials based on metakaolin and ladle slag. Appl. Clay Sci. 73, 78-85. https://doi.org/10.1016/j.clay.2012.09.015

Cheng, H.; Lin, K-L.; Cui, R.; Hwang, C-L.; Cheng, T-W.; Chang, Y-M. (2015) Effect of solid-to-liquid ratios on the properties of waste catalyst metakaolin-based geopolymers. Constr. Build. Mater. 88, 74-83. https://doi.org/10.1016/j.conbuildmat.2015.01.005

Slaty, F.; Khoury, H.; Rahier, H.; Wastiels, J. (2015) Durability of alkali-activated cement produced from kaolinitic clay. Appl. Clay Sci. 104, 229-237. https://doi.org/10.1016/j.clay.2014.11.037

Saavedra, W. G. V.; ¬ngulo, D. E.; de GutiÈrrez, R. M. (2016) Fly Ash Slag Geopolymer Concrete: Resistance to Sodium and Magnesium Sulfate Attack. J. Mater. Civ. Eng. 28 [12], 04016148-04016157. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001618

Dzunuzovic, N.; Komljenovic, M.; Nikolic, V.; Ivanovic, T. (2017) External sulfate attack on alkali-activated fly ash-blast furnace slag composite. Constr. Build. Mater. 157, 737-747. https://doi.org/10.1016/j.conbuildmat.2017.09.159

Zhang, J.; Shi, C.; Zhang, Z.; Ou, Z. (2017) Durability of alkali-activated materials in aggressive environments: A review on recent studies. Constr. Build. Mater. 152, 598-613. https://doi.org/10.1016/j.conbuildmat.2017.07.027

Komnitsas, K.; Zaharaki, D. (2007) Geopolymerisation: A review and prospects for the minerals industry. Miner. Eng. 20 [14], 1261-1277. https://doi.org/10.1016/j.mineng.2007.07.011

Fernández-JimÈénez, A.; Palomo, A. (2005) Composition and microstructure of alkali-activated fly ash binder: Effect of the activator. Cem. Concr. Res. 35 [10], 1984-1992. https://doi.org/10.1016/j.cemconres.2005.03.003

Ruiz-Santaquiteria, C.; Skibsted, J.; Fernández-Jiménez, A.; Palomo, A. (2012) Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates. Cem. Concr. Res. 42 [9], 1242-1251. https://doi.org/10.1016/j.cemconres.2012.05.019

Granizo, N.; Palomo, A.; Fernandez-JimÈnez, A. (2014) Effect of temperature and alkaline concentration on metakaolin leaching kinetics. Ceram. Int. 40 [7], 8975-8985. https://doi.org/10.1016/j.ceramint.2014.02.071

ABNT NBR 16697: 2018, Portland cement. Requirements

ABNT NBR 8522: 2017, Concrete. Determination of static modulus of elasticity and deformation by compression.

Criado, M.; Fern·ndez-JimÈnez, A.; Palomo, A. (2007) Alkali activation of fly ash: Effect of the SiO2/Na2O ratio. Micropor. Mesopor. Mater. 106 [1-3], 180-191. https://doi.org/10.1016/j.micromeso.2007.02.055

ABNT NBR 7214: 2015, Standard sand for cement tests. Specification.

ABNT NBR 15630: 2009, Mortars applied on walls and ceilings. Determination of elasticity modulus by the ultrasonic wave propagation

Santos, F. I. G.; Rocha, J. C.; Cheriaf, M. (2007) Influence of bottom ash replaced natural aggregate and air-entraining agent in moisture transfer mechanisms in mortars. Revista MatÈria. 12 [2], 253-268. https://doi.org/10.1590/S1517-70762007000200003

ABNT NBR 9778: 2009, Hardened mortar and concrete. Determination of absorption, voids and specific gravity.

Dimas, D.; Giannopoulou, I.; Panias, D. (2009) Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology. J. Mater. Sci. 44 [14], 3719-3730. https://doi.org/10.1007/s10853-009-3497-5

Hoyos-Montilla, A.A.; Arias-Jaramillo, Y.P.; TobÛn, J.I. (2018) Evaluation of cements obtained by alkali-activated coal ash with NaOH cured at low temperatures. Mater. Construcc. 68 (332), 170, 2018. https://doi.org/10.3989/mc.2018.10117

Fern·ndez-JimÈnez, A.; Palomo, A.; Vazquez, T.; Vallepu, R.; Terai, T.; Ikeda, K. (2008) Alkaline activation of blends of metakaolin and calcium aluminate. J. Am. Ceram. Soc. 91 [4], 1231-1236. https://doi.org/10.1111/j.1551-2916.2007.02002.x

Fernández-Jiménez, A.; Palomo, A. (2005) Mid-infrared spectroscopic studies of alkali-activated fly ash structure. Microp. Mesop. Mater. 83, 207-214. https://doi.org/10.1016/j.micromeso.2005.05.057

Ismail, I.; Bernal, S. A.; Provis, J. L.; San Nicolas, R.; Hamdan, S.; Van Deventer, J. S. J. (2014) Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem. Concr. Compos. 45, 125-135. https://doi.org/10.1016/j.cemconcomp.2013.09.006

Reyes-Bozo, L.; Escudey, M.; Vyhmeister, E.; Higueras, P.; Godoy-Faúndez, A.; Salazar, J. L.; ValdÈs-Gonz·lez, H.; Wolf-Sep˙lveda, G.; Herrera-Urbina, R. (2015) Adsorption of biosolids and their main components on chalcopyrite, molybdenite and pyrite: Zeta potential and FTIR spectroscopy studies. Miner. Eng. 78, 128-135. https://doi.org/10.1016/j.mineng.2015.04.021

White, W. B.; Roy, R. (1964) Infrared spectra-crystal structure correlations: ii. Comparison of simple polymorphic minerals. The Am. Mineral. 49 [11-12], 1670-1687.

Yankwa Djobo, J. N.; Elimbi, A.; Tchakout, H. K.; Kumar, S. (2016) Mechanical activation of volcanic ash for geopolymer synthesis: effect on reaction kinetics, gel characteristics, physical and mechanical properties. Res. Adv. 6 [45], 39106-39117. https://doi.org/10.1039/C6RA03667H

Davidovits, F.; Davidovits, J.; Davidovits, M. (2013) Geopolymer Cement of The Calcium Ferro-Aluminosilicate Polymer Type And Production Process EP 2632870 A1.

Wang, C.C.; Wang, H.Y.; Chen, B.T.; Peng, Y.C. (2017) Study on the engineering properties and prediction models of an alkali-activated mortar material containing recycled waste glass. Constr. Build. Mater. 132, 130-141. https://doi.org/10.1016/j.conbuildmat.2016.11.103

Mangat, P. S.; Ojedokun, O. O. (2018) Influence of curing on pore properties and strength of alkali activated mortars. Constr. Build. Mater. 188, 337-348. https://doi.org/10.1016/j.conbuildmat.2018.07.180

Hasselman, D. P. H. (1969) Griffith flaws and the effect of porosity on tensile strength of brittle ceramics. J. Am. Ceram. Soc. 52, 457. https://doi.org/10.1111/j.1151-2916.1969.tb11982.x

Chen, X.; Wu, S.; Zhou, J. (2013) Influence of porosity on compressive and tensile strength of cement mortar. Constr. Build. Mater. 40, 869-874. https://doi.org/10.1016/j.conbuildmat.2012.11.072




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es