Materiales de Construcción, Vol 69, No 336 (2019)

Study of the suitability of a new structural concrete manufactured with carbon fiber reinforced lightweight aggregates sintered from wastes


https://doi.org/10.3989/mc.2019.05719

J. M. Moreno-Maroto
Department of Chemical, Environmental and Materials Engineering, Higher Polytechnic School of Linares, University of Jaen, Spain
orcid http://orcid.org/0000-0002-6312-1075

A. L. Beaucour
Laboratoire de Mécanique & Matériaux du Génie Civil, University of Cergy-Pontoise, Spain
orcid http://orcid.org/0000-0001-7573-0997

B. González-Corrochano
Department of Physical Chemistry, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Spain
orcid http://orcid.org/0000-0001-9591-4347

J. Alonso-Azcárate
Department of Physical Chemistry, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Spain
orcid http://orcid.org/0000-0003-2187-9360

Abstract


The suitability of three new lightweight aggregates containing carbon fiber residues (CAs) as components in structural lightweight concrete has been studied. Prismatic concrete specimens were prepared using these CAs as a coarse fraction. Additional specimens of normal-weight aggregate, commercial lightweight aggregate and mortar were prepared for comparison. The CA-concrete samples (CACs) have yielded compressive strength values between 35 and 55 MPa as well as low density and thermal conductivity results. Furthermore, the CACs have displayed the highest ratios of mechanical strength over density and the thermal conductivity, which means that there is a better balance between their mechanical and physical properties than in the other samples studied. These results indicate that the new CAs could have great potential for use in structural lightweight concrete, also complying with the principles of the Circular Economy.

Keywords


Aggregate; Concrete; Fibre reinforcement; Waste treatment; Mechanical properties

Full Text:


HTML PDF XML

References


Weinecke, M.H.; Faulkner, B.P. (2002) Production of lightweight aggregate from waste materials. Min. Eng. 54 [11], 39-43.

EN-13055-1 (2002) Lightweight aggregates. Part 1: Lightweight aggregates for concrete, mortar and grout. European Committee for Standardization.

EN 206-1 (2000) Concrete. Part 1: Specification, performance, production and conformity. European Committee for Standardization.

EHE-08 (2008) Instrucción de Hormigón Estructural (EHE-08). Ministerio de Fomento, Gobierno de España.

Gerritse, A. (1981) Design considerations for reinforced lightweight concrete. Int. J. Cem. Compos. Lightweight Concrete. 3 [1], 57-69. https://doi.org/10.1016/0262-5075(81)90031-2

Torres, P.; Fernandes, H.R.; Olhero, S.; Ferreira, J.M.F. (2009)Incorporation of wastes from granite rock cutting and polishing industries to produce roof tiles. J. Eur. Ceram. Soc. 29[1], 23-30. https://doi.org/10.1016/j.jeurceramsoc.2008.05.045

Dondi, M.; Cappelletti, P.; D'Amore, M.; de Gennaro, R.; Graziano, S.F.; Langella, A.; Raimondo, M.; Zanelli, C. (2016) Lightweight aggregates from waste materials: Reappraisal of expansion behavior and prediction schemes for bloating. Constr. Build. Mater. 127, 394-409. https://doi.org/10.1016/j.conbuildmat.2016.09.111

Lynn, C.J.; Dhir, R.K.; Ghataora, G.S.; West, R.P. (2015) Sewage sludge ash characteristics and potential for use in concrete. Constr. Build. Mater. 98, 767-779. https://doi.org/10.1016/j.conbuildmat.2015.08.122

Wainwright, P.J.; Cresswell, D.J.F. (2001) Synthetic aggregates from combustion ashes using an innovative rotary kiln. Waste Manage. 21 [3], 241-246. https://doi.org/10.1016/S0956-053X(00)00096-9

De' Gennaro, R.; Langella, A.; D' Amore, M.; Dondi, M.;Colella, A.; Cappelletti, P.; De' Gennaro, M. (2008) Use of zeolite-rich rocks and waste materials for the production of structural lightweight concretes. Appl. Clay Sci. 41, 61-72. https://doi.org/10.1016/j.clay.2007.09.008

Mueller, A.; Schnell, A.; Ruebner, K. (2015) The manufacture of lightweight aggregates from recycled masonry rubble. Constr. Build. Mater. 98, 376-387. https://doi.org/10.1016/j.conbuildmat.2015.07.027

Moreno-Maroto, J.M.; González-Corrochano, B.; Alonso-Azcárate, J.; Rodríguez, L.; Acosta, A. (2017) Manufacturing of lightweight aggregates with carbon fiber and mineral wastes. Cem. Concr. Compos. 83, 335-348. https://doi.org/10.1016/j.cemconcomp.2017.08.001

Fitzer, E. (1987) The future of carbon-carbon composites. Carbon. 25[2], 163-190. https://doi.org/10.1016/0008-6223(87)90116-3

Tanyildizi, H. (2008) Effect of temperature, carbon fibers, and silica fume on the mechanical properties of lightweight concretes. New Carbon Mater., 23[4], 339-344. https://doi.org/10.1016/S1872-5805(09)60005-6

Park, S.B.; Lee, B.I. (1993) Mechanical Properties of Carbon-Fiber-Reinforced Polymer-Impregnated Cement Composites. Cem. Concr. Compos. 15[3], 153-163. https://doi.org/10.1016/0958-9465(93)90004-S

Zheng, Q.; Chung, D.D.L. (1989) Carbon fiber reinforced cement composites improved by using chemical agents. Cem. Concr. Res. 19[1], 25-41. https://doi.org/10.1016/0008-8846(89)90062-8

Garcés, P.; Fraile, J.; Vilaplana-Ortego, E.; Cazorla- Amorós, D.; Alcocel, E.G.; Andión, L.G. (2005) Effect of carbon fibres on the mechanical properties and corrosion levels of reinforced portland cement mortars. Cem. Concr. Res. 35[2], 324-331. https://doi.org/10.1016/j.cemconres.2004.05.013

Chen, B.; Liu, J.; Wu, K. (2005) Electrical responses of carbon fiber reinforced cementitious composites to monotonic and cyclic loading. Cem. Concr. Res. 35[11], 2183-2191. https://doi.org/10.1016/j.cemconres.2005.02.004

Mingqing, S.; Zhuoqiu, L.; Qizhao, M.; Darong, S. (1999) A study on thermal self-monitoring of carbon fiber reinforced concrete. Cem. Concr. Res. 29[5], 769-771. https://doi.org/10.1016/S0008-8846(99)00006-X

Fu, X.; Chung, D.D.L. (1995) Contact electrical resistivity between cement and carbon fiber: Its decrease with increasing bond strength and its increase during fiber pull-out. Cem. Concr. Res. 25[7], 1391-1396. https://doi.org/10.1016/0008-8846(95)00132-V

Yasuda, Y. (1991) Sewage-sludge utilization in Tokyo. Water Sci. Technol. 23 [10-12], 1743-1752. https://doi.org/10.2166/wst.1991.0629

González-Corrochano, B.;Alonso-Azcárate, J.; Rodas, M. (2009) Production of lightweight aggregates from mining and industrial wastes. J. Environ. Manag. 90 [8], 2801-2812. https://doi.org/10.1016/j.jenvman.2009.03.009 PMid:19386411

EN-1097-3 (1998) Tests for mechanical and physical properties of aggregates. Part 3: Determination of loose bulk density and voids. European Committee for Standardization.

EN-1097-6 (2000) Tests for mechanical and physical properties of aggregates. Part 6: Determination of particle density and water absorption. European Committee for Standardization.

Bernhardt, M.; Tellesbø, H.; Justnes, H.; Wiik, K. (2013) Mechanical properties of lightweight aggregates. J. Eur. Ceram. Soc. 33, 2731-2743. https://doi.org/10.1016/j.jeurceramsoc.2013.05.013

De Santiago Buey, C.; Raya García, M. (2008) Análisis del peso específico y porosidad de materiales porosos mediante picnometría de helio. Ing. civil, ISSN 0213-8468, 151,95-103.

Moreno-Maroto, J.M.; González-Corrochano, B.; Alonso- Azcárate, J.; Rodríguez, L.; Acosta, A. (2017) Development of lightweight aggregates from stone cutting sludge, plastic wastes and sepiolite rejections for agricultural and environmental purposes. J. Environ. Manage. 200, 229-242. https://doi.org/10.1016/j.jenvman.2017.05.085 PMid:28582746

Li, Y.; Wu, D.; Zhang, J.; Chang, L.; Fang, Z.; Shi, Y. (2000) Measurement and statistics of single pellet mechanical strength of differently shaped catalysts. Powder Technol. 113 [1-2], 176-184. https://doi.org/10.1016/S0032-5910(00)00231-X

Yashima, S.; Kanda, Y.; Sano, S. (1987) Relationship between particle size and fracture energy or impact velocity required to fracture as estimated from single particle crushing. Powder Technol. 51, 277-282. https://doi.org/10.1016/0032-5910(87)80030-X

NF P18-452 (2017) Bétons - Mesure du temps d'écoulement des bétons et des mortiers au maniabilimètre. Association Francaise de Normalisation AFNOR.

RILEM (2002) Workability and Rheology of Fresh Concrete: Compendium of Tests. Report of RILEM Technical Committee TC 145-WSM. Workability of Special Concrete Mixes, 54-56.

ASTM C 597-16 (2016) Standard Test Method for Pulse Velocity Through Concrete. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.

ASTM STP 169D (2006) Significance of Tests and Properties of Concrete and Concrete-Making Materials, ASTM International, West Conshohocken, PA.

EN-196-1 (2005) Methods of testing cement. Part 1: Determination of strength. European Committee for Standardization.

NF P18-459 (2010) Béton - Essai pour béton durci - Essai de porosité et de masse volumique. Association Francaise de Normalisation AFNOR.

Nguyen, L.H.; Beaucour, A-L.; Ortola, S.; Noumowé, A. (2014) Influence of the volume fraction and the nature of fine lightweight aggregates on the thermal and mechanical properties of structural concrete. Constr. Build. Mater. 51, 121-132. https://doi.org/10.1016/j.conbuildmat.2013.11.019

Ke, Y.; Beaucour, A-L.; Ortola, S.; Dumontet, H.; Cabrillac, R. (2009) Influence of volume fraction and characteristics of lightweight aggregates on the mechanical properties of concrete. Constr. Build. Mater. 23, 2821-2828. https://doi.org/10.1016/j.conbuildmat.2009.02.038

De' Gennaro, R.; Cappelletti, P.; Cerri, G.; De' Gennaro, M.; Dondi, M.; Graziano, S.F.; Langella, A. (2007) Campanian Ignimbrite as raw material for lightweight aggregates. Appl. Clay Sci. 37[1-2], 115-126. https://doi.org/10.1016/j.clay.2006.11.004

Hobbs, C. (1964) The physical properties of lightweight aggregates and concretes. Chemistry and Industry. April 11, 1964, 594-600.

Lo, T.Y.; Cui, H.Z. (2004) Effect of porous lightweight aggregate on strength of concrete. Mater. Lett. 58 [6] 916-919. https://doi.org/10.1016/j.matlet.2003.07.036

Wasserman, R.; Bentur, A. (1996) Interfacial interactions in lightweight aggregate concretes and their influence on the concrete strength. Cem. Concr. Compos. 18 [1], 67-76. https://doi.org/10.1016/0958-9465(96)00002-9

Ke, Y.; Ortola, S.; Beaucour, A-L.; Dumontet, H. (2010) Identification of microstructural characteristics in lightweight aggregate concretes by micromechanical modelling including the interfacial transition zone (ITZ). Cem. Concr. Res. 40 [11], 1590-1600. https://doi.org/10.1016/j.cemconres.2010.07.001




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es