Materiales de Construcción, Vol 69, No 336 (2019)

Acoustic behavior of porous concrete. Characterization by experimental and inversion methods


https://doi.org/10.3989/mc.2019.03619

M. Pereira
ISISE, Department of Civil Engineering, University of Coimbra, Portugal
orcid http://orcid.org/0000-0003-2229-1825

J. Carbajo
Department of Physics, Systems Engineering and Signal Theory, University of Alicante, Spain
orcid http://orcid.org/0000-0001-6377-5709

L. Godinho
ISISE, Department of Civil Engineering, University of Coimbra, Portugal
orcid http://orcid.org/0000-0002-2989-375X

P. Amado-Mendes
ISISE, Department of Civil Engineering, University of Coimbra, Portugal
orcid http://orcid.org/0000-0003-2233-2383

D. Mateus
ISISE, Department of Civil Engineering, University of Coimbra, Portugal
orcid http://orcid.org/0000-0002-4130-4786

J. Ramis
Department of Physics, Systems Engineering and Signal Theory, University of Alicante, Spain
orcid http://orcid.org/0000-0003-3105-2770

Abstract


The use of porous concrete solutions with lightweight aggregates has become increasingly common in noise control due to their versatility in exterior and interior applications. In this work, samples of porous consolidated concrete with aggregates of expanded clay were produced, in order to study the influence of the grain size, thickness and water/aggregate/cement ratio on the sound absorption. Experimental techniques were used to obtain the surface impedance and sound absorption coefficient. In addition to experimental characterizations, an inverse method was used (based on a genetic algorithm) to obtain the macroscopic parameters capable of representing the materials studied through the theoretical model of Horoshenkov-Swift. Using the theoretical Horoshenkhov-Swift model it becomes possible to represent these materials in numerical models as equivalent fluids.

Keywords


Concrete; Aggregate; Mixture proportion; Characterization; Modelization

Full Text:


HTML PDF XML

References


Fahy, F. J. (2000). Foundations of engineering acoustics. Elsevier. https://doi.org/10.1016/B978-012247665-5/50002-3

Vaaina, M.; Hughes, D. C.; Horoshenkov, K. V.; Lapc«Ìk Jr, L. (2006) The acoustical properties of consolidated expanded clay granulates. Appl. Acoust., 67[8], 787-796. https://doi.org/10.1016/j.apacoust.2005.08.003

Magrini, U.; Ricciardi, P. (2000) Surface sound acoustical absorption and application of panels composed of granular porous materials. Proceedings of Inter-Noise 2000, 27-30.

Asdrubali, F.; Horoshenkov, K. V. (2002) The acoustic properties of expanded clay granulates. Build. Acoust., 9[2], 85-98. https://doi.org/10.1260/135101002760164553

Krezel, Z. A.; McManus, K. (2000) Recycled aggregate concrete sound barriers for urban freeways. In Waste Management Series, 1, 884-892. https://doi.org/10.1016/S0713-2743(00)80097-5

Kim, H. K.; Lee, H. K. (2010) Influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete. Appl. Acoust., 71[7], 607-615. https://doi.org/10.1016/j.apacoust.2010.02.001

Olek, J.; Weiss, W. J.; Neithalath, N. (2004) Concrete mixtures that incorporate inclusions to reduce the sound generated in portland cement concrete pavements, Report no. SQDH 2004-2, School of Civil Engineering, Purdue University.

Neithalath, N. (2004) Development and characterization of acoustically efficient cementitious materials, PhD Thesis, Purdue University.

Carbajo San MartÌn, J.; Esquerdo-Lloret, T. V.; Ramis- Soriano, J.; Nadal-Gisbert, A. V.; Denia, F. D. (2015) Acoustic properties of porous concrete made from arlite and vermiculite lightweight aggregates. Mater. Construcc. 65 [320], e072. https://doi.org/10.3989/mc.2015.01115

Bartolini, R.; Filippozzi, S.; Princi, E.; Schenone, C.; Vicini, S. (2010) Acoustic and mechanical properties of expanded clay granulates consolidated by epoxy resin. Appl. Clay. Sci., 48[3], 460-465. https://doi.org/10.1016/j.clay.2010.02.007

Pereira, A.; Godinho, L.; Morais, L. (2010) The acoustic behavior of concrete resonators incorporating absorbing materials. Noise Control Eng. J., 58[1], 27-34. https://doi.org/10.3397/1.3264649

Kim, H. K.; Jeon, J. H.; Lee, H. K. (2012) Workability, and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air. Construc. Build. Mat., 29, 193-200. https://doi.org/10.1016/j.conbuildmat.2011.08.067

Umnova, O.; Attenborough, K.; Shin, H. C.; Cummings, A. (2005) Deduction of tortuosity and porosity from acoustic reflection and transmission measurements on thick samples of rigid-porous materials. Appl. Acoust., 66[6], 607-624. https://doi.org/10.1016/j.apacoust.2004.02.005

Kim, H. K.; Lee, H. K. (2010) Acoustic absorption modeling of porous concrete considering the gradation and shape of aggregates and void ratio. J. Sound Vib., 329[7], 866-879. https://doi.org/10.1016/j.jsv.2009.10.013

Maderuelo-Sanz, R.; Nadal-Gisbert, A. V.; Crespo- AmorÛs, J. E.; Morillas, J. M. B.; Parres-GarcÌa, F.; Sanchis, E. J. (2016) Influence of the microstructure in the acoustical performance of consolidated lightweight granular materials. Acoust Aust, 44[1], 149-157. https://doi.org/10.1007/s40857-016-0048-5

Buratti, C.; Merli, F.; Moretti, E. (2017) Aerogel-based materials for building applications: Influence of granule size on thermal and acoustic performance. Energ. Build., 152, 472-482. https://doi.org/10.1016/j.enbuild.2017.07.071

Wang, H.; Ding, Y.; Liao, G.; Ai, C. (2016) Modeling and optimization of acoustic absorption for porous asphalt concrete. J. Eng. Mech., 142[4], 04016002. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001037

Cobo, P.; SimÛn, F. (2016). A comparison of impedance models for the inverse estimation of the non-acoustical parameters of granular absorbers. Appl. Acoust., 104, 119-126. https://doi.org/10.1016/j.apacoust.2015.11.006

Attenborough, K. (1983) Acoustical characteristics of rigid fibrous absorbents and granular materials. J. Acoust. Soc. Am., 73[3], 785-799. https://doi.org/10.1121/1.389045

Miki, Y. (1990) Acoustical properties of porous materialsgeneralizations of empirical models. J. Acoust. Soc. Jpn. (E), 11[1], 25-28. https://doi.org/10.1250/ast.11.25

Stinson, M. R.; Champoux, Y. (1992) Propagation of sound and the assignment of shape factors in model porous materials having simple pore geometries. J. Acoust. Soc. Am., 91[2], 685-695. https://doi.org/10.1121/1.402530

Allard, J. F.; Champoux, Y. (1992) New empirical equations for sound propagation in rigid frame fibrous materials. J. Acoust. Soc. Am., 91[6], 3346-3353. https://doi.org/10.1121/1.402824

Panneton, R.; Atalla, N. (1996) Numerical prediction of sound transmission through finite multilayer systems with poroelastic materials. J. Acoust. Soc. Am., 100[1], 346-354. https://doi.org/10.1121/1.415956

Fouladi, M. H.; Nor, M. J. M.; Ayub, M.; Leman, Z. A. (2010) Utilization of coir fiber in multilayer acoustic absorption panel. Appl. Acoust., 71[3], 241-249. https://doi.org/10.1016/j.apacoust.2009.09.003

Tournat, V.; Pagneux, V.; Lafarge, D.; Jaouen, L. (2004) Multiple scattering of acoustic waves and porous absorbing media. Phys. Rev. E, 70[2], 026609. https://doi.org/10.1103/PhysRevE.70.026609 PMid:15447612

Castagnede, B.; Aknine, A.; Brouard, B.; Tarnow, V. (2000) Effects of compression on the sound absorption of fibrous materials. Appl. Acoust., 61[2], 173-182. https://doi.org/10.1016/S0003-682X(00)00003-7

GlÈ, P.; Gourdon, E.; Arnaud, L. (2011) Acoustical properties of materials made of vegetable particles with several scales of porosity. Appl. Acoust., 72[5], 249-259. https://doi.org/10.1016/j.apacoust.2010.11.003

Bo, Z.; Tianning, C. (2009) Calculation of sound absorption characteristics of porous sintered fiber metal. Appl. Acoust., 70[2], 337-346. https://doi.org/10.1016/j.apacoust.2008.03.004

Sgard, F. C.; Atalla, N.; Nicolas, J. (2000) A numerical model for the low frequency diffuse field sound transmission loss of double-wall sound barriers with elastic porous linings. J. Acoust. Soc. Am., 108[6], 2865-2872. https://doi.org/10.1121/1.1322022

Xin, F. X.; Lu, T. J. (2010) Sound radiation of orthogonally rib-stiffened sandwich structures with cavity absorption. Compos. Sci. Technol., 70[15], 2198-2206. https://doi.org/10.1016/j.compscitech.2010.09.001

Horoshenkov, K. V.; Swift, M. J. (2001) The acoustic properties of granular materials with pore size distribution close to log-normal. J. Acoust. Soc. Am., 110[5], 2371-2378. https://doi.org/10.1121/1.1408312 PMid:11757927

NP-EN 993-1:2000. (2000) Ensaio das propriedades geomÈtricas dos agregados, Parte 1: An·lise GranulomÈtrica, MÈtodo de PeneiraÁ"o, IPQ, Lisboa.

ISO 10534-2:2001. (2001) Acoustics determination of sound absorption coefficient and impedance in impedance tube: Part 2. Transfer-function method, ICS17.140.01

Bonfiglio, P.; Pompoli, F. (2007) Comparison of different inversion techniques for determining physical parameters of porous media. In ICA 2007[1-6]. International Congress of Acoustics.

Umnova, O.; Attenborough, K.; Li, K. M. (2000) Cell model calculations of dynamic drag parameters in packings of spheres. J. Acoust. Soc. Am., 107[6], 3113-3119. https://doi.org/10.1121/1.429340 PMid:10875357




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es