Materiales de Construcción, Vol 70, No 337 (2020)

Evaluation of the physical-mechanical properties of cement-lime based masonry mortars produced with mixed recycled aggregates


https://doi.org/10.3989/mc.2020.02819

R. L.S. Ferreira
Federal University of Rio Grande do Norte, Civil Engineering Department, Brazil
orcid https://orcid.org/0000-0001-6744-5395

M. A.S. Anjos
Federal Institute of Education, Science and Technology of Paraiba, Civil Construction Department, Brazil
orcid https://orcid.org/0000-0001-9563-2534

E. F. Ledesma
Área de Mecánica de Medios Continuos y Teoría de Estructuras, Universidad de Córdoba, Spain
orcid https://orcid.org/0000-0002-3744-3791

J. E.S. Pereira
University of Rio Grande do Norte, Chemical Engineering Department, Brazil
orcid https://orcid.org/0000-0002-7612-0303

A. K.C. Nóbrega
Federal University of the Semi-arid, Engineering of Department, Brazil
orcid https://orcid.org/0000-0002-9481-5408

Abstract


This study investigated the physical-mechanical effects of cement-lime mortars containing recycled aggregate of construction and demolition waste (CDW). The natural aggregate (NA) was replaced by volume at 25%, 50%, 75% and 100% by mixed recycled aggregate (MRA) obtained from the CDW crushing. Five types of mortars were prepared with a volumetric ratio of 1:1:6 (cement, lime and aggregate) and water/binder ratio based on the fixed consistency of 260 mm. The effects of MRA on fresh and hardened mortars’ properties were analyzed. The results were analyzed using a one-way ANOVA. MRA incorporation improved most of the physical-mechanical properties of mortars tested, except for hardened bulk density, water absorption and porosity. In the long-run, mechanical strengths significantly increased in all compositions, especially those with higher percentages of MRA. The results obtained showed that the use of MRA in masonry mortars is an alternative to reduce the generation of waste and consumption of natural resources.

Keywords


Mortar; Mechanical properties; Physical properties; Compressive strength; Waste treatment

Full Text:


HTML PDF XML

References


Kisku, N.; Joshi, H.; Ansari, M.; Panda, S.K.; Nayak, S.; Dutta, S.C. (2017) A critical review and assessment for usage of recycled aggregate as sustainable construction material. Constr. Build. Mater. 131, 721-740. https://doi.org/10.1016/j.conbuildmat.2016.11.029

Muñoz-Ruiperez, C.; Rodríguez, A.; Gutiérrez-González, S.; Calderón, V. (2016.) Lightweight masonry mortars made with expanded clay and recycled aggregates. Constr. Build. Mater. 118, 139-145. https://doi.org/10.1016/j.conbuildmat.2016.05.065

Silva, R. V.; De Brito, J.; Dhir, R.K. (2015) Prediction of the shrinkage behavior of recycled aggregate concrete: A review. Constr. Build. Mater. 77, 327-339. https://doi.org/10.1016/j.conbuildmat.2014.12.102

Pacheco-Torgal, F. (2017). High tech startup creation for energy efficient built environment. Renew. Sustain. Energy Rev. 71, 618-629. https://doi.org/10.1016/j.rser.2016.12.088

Kulatunga, U.; Amaratunga, D.; Haigh, R.; Rameezdeen, R. (2006) Attitudes and perceptions of construction workforce on construction waste in Sri Lanka. Manag. Environ. Qual. An Int. J. 17, 57-72. https://doi.org/10.1108/14777830610639440

Krausmann, F.; Fischer-Kowalski, M.; Schandl, H.; Eisenmenger, N. (2008) The global sociometabolic transition: Past and present metabolic profiles and their future trajectories. J. Ind. Ecol. 12, 637-656. https://doi.org/10.1111/j.1530-9290.2008.00065.x

Tam, V.W.Y.; Soomro, M.; Evangelista, A.C.J. (2018) A review of recycled aggregate in concrete applications (2000-2017). Constr. Build. Mater. 172, 272-292. https://doi.org/10.1016/j.conbuildmat.2018.03.240

Contreras, M.; Teixeira, S.R.; Lucas, M.C.; Lima, L.C.N.; Cardoso, D.S.L.; da Silva, G.A.C.; Gregório, G.C.; de Souza, A.E.; dos Santos, A. (2016) Recycling of construction and demolition waste for producing new construction material (Brazil case-study). Constr. Build. Mater. 123, 594-600. https://doi.org/10.1016/j.conbuildmat.2016.07.044

Paz, D.H.F.; Lafayette, K.P.V. (2016) Forecasting of construction and demolition waste in Brazil. Waste Manag. Res. 34 [8], 708-716. https://doi.org/10.1177/0734242X16644680 PMid:27177555

Cabral, A.E.B.; Schalch, V.; Molin, D.C.C.D.; Ribeiro, J.L.D. (2010) Mechanical Properties Modeling of Recycled Aggregate Concrete. Constr. Build. Mater. 24 [4], 421-430. https://doi.org/10.1016/j.conbuildmat.2009.10.011

Moretti, J.P.; Sales, A.; Almeida, F.C.R.; Rezende, M.A.M.; Gromboni, P.P. (2016) Joint use of construction waste (CW) and sugarcane bagasse ash sand (SBAS) in concrete. Constr. Build. Mater. 113, 317-323. https://doi.org/10.1016/j.conbuildmat.2016.03.062

Silva, R. V.; De Brito, J.; Dhir, R.K. (2014) Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr. Build. Mater. 65, 201-217. https://doi.org/10.1016/j.conbuildmat.2014.04.117

Andrade, J.J. de O.; Possan, E.; Squiavon, J.Z.; Ortolan, T.L.P. (2018) Evaluation of mechanical properties and carbonation of mortars produced with construction and demolition waste. Constr. Build. Mater. 161, 70-83. https://doi.org/10.1016/j.conbuildmat.2017.11.089

Corinaldesi, V.; Moriconi, G. (2009) Behaviour of cementitious mortars containing different kinds of recycled aggregate. Constr. Build. Mater. 23 [1], 289-294. https://doi.org/10.1016/j.conbuildmat.2007.12.006

Cuenca-Moyano, G.M.; Martín-Morales, M.; Valverde- Palacios, I.; Valverde-Espinosa, I.; Zamorano, M. (2014) Influence of pre-soaked recycled fine aggregate on the properties of masonry mortar. Constr. Build. Mater. 70, 71-79. https://doi.org/10.1016/j.conbuildmat.2014.07.098

Ferro, G.A.; Spoto, C.; Tulliani, J.M.; Restuccia, L. (2015) Mortar Made of Recycled Sand from C&D. Procedia Eng. 109, 240-247. https://doi.org/10.1016/j.proeng.2015.06.224

Le, T.; Rémond, S.; Le Saout, G.; Garcia-Diaz, E. (2016) Fresh behavior of mortar based on recycled sand - Influence of moisture condition. Constr. Build. Mater. 106, 35-42. https://doi.org/10.1016/j.conbuildmat.2015.12.071

Ledesma, E.F.; Jiménez, J.R.; Ayuso, J.; Fernández, J.M.; De Brito, J. (2015) Maximum feasible use of recycled sand from construction and demolition waste for eco-mortar production - Part-I: Ceramic masonry waste. J. Clean. Prod. 87, 692-706. https://doi.org/10.1016/j.jclepro.2014.10.084

Martínez, I.; Etxeberria, M.; Pavón, E.; Díaz, N. (2013) A comparative analysis of the properties of recycled and natural aggregate in masonry mortars. Constr. Build. Mater. 49, 384-392. https://doi.org/10.1016/j.conbuildmat.2013.08.049

Restuccia, L.; Spoto, C.; Ferro, G.A.; Tulliani, J. (2016) Recycled Mortars with C&D Waste. Procedia Struct. Integr. 2, 2896-2904. https://doi.org/10.1016/j.prostr.2016.06.362

Saiz Martínez, P.; González Cortina, M.; Fernández Martínez, F.; Rodríguez Sánchez, A. (2016) Comparative study of three types of fine recycled aggregates from construction and demolition waste (CDW), and their use in masonry mortar fabrication. J. Clean. Prod. 118, 162-169. https://doi.org/10.1016/j.jclepro.2016.01.059

Samiei, R.R.; Daniotti, B.; Dotelli, R.P.G. (2015). Properties of cement-lime mortars vs. cement mortars containing recycled concrete aggregates. Constr. Build. Mater. 84, 84-94. https://doi.org/10.1016/j.conbuildmat.2015.03.042

Zhao, Z.; Remond, S.; Damidot, D.; Xu, W. (2015) Influence of fine recycled concrete aggregates on the properties of mortars. Constr. Build. Mater. 81, 179-186. https://doi.org/10.1016/j.conbuildmat.2015.02.037

Moriconi, G.; Corinaldesi, V.; Antonucci, R. (2003) Environmentally-friendly mortars : a way to improve bond between mortar and brick. Mater. Struct. 36 [10], 702-708. https://link.springer.com/content/pdf/10.1007% 2FBF02479505.pdf https://doi.org/10.1007/BF02479505

Angulo, S.C.; Ulsen, C.; John, V.M., Kahn, H.; Cincotto, M.A. (2009) Chemical-mineralogical characterization of C&D waste recycled aggregates from São Paulo, Brazil. Waste Manag. 29 [2], 721-730. https://doi.org/10.1016/j.wasman.2008.07.009 PMid:18926692

Ulsen, C.; Kahn, H.; Hawlitschek, G.; Masini, E.A.; Angulo, S.C.; John, V.M. (2013) Production of recycled sand from construction and demolition waste. Constr. Build. Mater. 40, 1168-1173. https://doi.org/10.1016/j.conbuildmat.2012.02.004

Bravo, M.; De Brito, J.; Pontes, J.; Evangelista, L. (2015) Durability performance of concrete with recycled aggregates from construction and demolition waste plants. Constr. Build. Mater. 77, 357-369. https://doi.org/10.1016/j.conbuildmat.2014.12.103

Bravo, M.; De Brito, J.; Pontes, J.; Evangelista, L. (2015) Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants. J. Clean. Prod. 99, 59-74. https://doi.org/10.1016/j.jclepro.2015.03.012

Cabral, A.E.B.; Schalch, V.; Molin, D.C.C.D.; Ribeiro, J.L.D. (2012) Performance estimation for concretes made with recycled aggregates of construction and demolition waste of some Brazilian cities. Mater. Res. 15 [6], 1037- 1046. https://doi.org/10.1590/S1516-14392012005000119

Pereira, P.; Evangelista, L.; De Brito, J. (2012) The effect of superplasticizers on the mechanical performance of concrete made with fine recycled concrete aggregates. Cem. Concr. https://doi.org/10.1016/j.cemconcomp.2012.06.009

Compos. 34 [9], 1044-1052. https://doi.org/10.1016/j. cemconcomp.2012.06.009

Thomas, C.; Setién, J.; Polanco, J.A.; Alaejos, P.; Sánchez De Juan, M. (2013) Durability of recycled aggregate concrete. Constr. Build. Mater. 40, 1054-1065. https://doi.org/10.1016/j.conbuildmat.2012.11.106

Jiménez, J.R.; Ayuso, J.; López, M.; Fernández, J.M.; De Brito, J. (2013) Use of fine recycled aggregates from ceramic waste in masonry mortar manufacturing. Constr. Build. Mater. 40, 679-690. https://doi.org/10.1016/j.conbuildmat.2012.11.036

Lima, P.R.L.; Leite, M.B. (2012) Influence of CDW Recycled Aggregate on Drying Shrinkage of Mortar. Open J. Civ. Eng. 2 [2], 53-57. https://doi.org/10.4236/ojce.2012.22009

Silva, R. V.; De Brito, J.; Dhir, R.K. (2016) Performance of cementitious renderings and masonry mortars containing recycled aggregates from construction and demolition wastes. Constr. Build. Mater. 105, 400-415. https://doi.org/10.1016/j.conbuildmat.2015.12.171

Corinaldesi, V. (2012) Environmentally-friendly bedding mortars for repair of historical buildings. Constr. Build. Mater. 35, 778-784. https://doi.org/10.1016/j.conbuildmat.2012.04.131

Rodrigues, F.; Evangelista, L.; de Brito, J. (2013) A new method to determine the density and water absorption of fine recycled aggregates. Mater. Res. 16 [5], 1045-1051. https://doi.org/10.1590/S1516-14392013005000074

Gayarre, F.L.; Boadella, I.L.; Pérez, C.L.-C.; López, M.S.; Cabo, A.D. (2017) Influence of the ceramic recycled agreggates in the masonry mortars properties. Constr. Build. Mater. 132, 457-461. https://doi.org/10.1016/j.conbuildmat.2016.12.021

Fernández-Ledesma, E.; Jiménez, J.R.; Ayuso, J.; Corinaldesi, V.; Iglesias-Godino, F.J. (2016) A proposal for the maximum use of recycled concrete sand in masonry mortar design. Mater. Construcc. 66 [321], e075 https://doi.org/10.3989/mc.2016.08414

Braga, M.; De Brito, J.; Veiga, R. (2015) Incorporation of fine sanitary ware aggregates in mortars. Constr. Build. Mater. 36, 960-968. https://doi.org/10.1016/j.conbuildmat.2012.06.031

Neno, C.; De Brito, J.; Veiga, R. (2014) Using fine recycled concrete aggregate for mortar production. Mater. Res. 17 [1], 168-177. https://doi.org/10.1590/S1516-14392013005000164

Vegas, I.; Ibañez, J.A.; Lisbona, A.; Sáez De Cortazar, A.; Frías, M. (2011) Pre-normative research on the use of mixed recycled aggregates in unbound road sections. Constr. Build. Mater. 25 [5], 2674-2682. https://doi.org/10.1016/j.conbuildmat.2010.12.018

Antiohos, S.; Tsimas, S. (2004) Activation of fly ash cementitious systems in the presence of quicklime: Part I. Compressive strength and pozzolanic reaction rate. Cem. Concr. Res. 34 [5], 769-779. https://doi.org/10.1016/j.cemconres.2003.08.008

Vichan, S.; Rachan, R.; Horpibulsuk, S. (2013) Strength and microstructure development in Bangkok clay stabilized with calcium carbide residue and biomass ash. ScienceAsia 39, 186-193. https://doi.org/10.2306/scienceasia1513-1874.2013.39.186

Tang, S.W.; Cai, X.H.; He, Z.; Shao, H.Y.; Li, Z.J.; Chen, E. (2016) Hydration process of fly ash blended cement pastes by impedance measurement. Constr. Build. Mater. 113, 939-950. https://doi.org/10.1016/j.conbuildmat.2016.03.141

Zhang, Z.; Li, L.; Ma, X.; Wang, H. (2016) Compositional, microstructural and mechanical properties of ambient condition cured alkali-activated cement. Constr. Build. Mater. 113, 237-245. https://doi.org/10.1016/j.conbuildmat.2016.03.043

Yildirim, S.T.; Meyer, C.; Herfellner, S. (2015) Effects of internal curing on the strength, drying shrinkage and freeze - thaw resistance of concrete containing recycled concrete aggregates. Constr. Build. Mater. 91, 288-296. https://doi.org/10.1016/j.conbuildmat.2015.05.045




Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es