Materiales de Construcción, Vol 70, No 337 (2020)

Clayey soil stabilization using alkali-activated cementitious materials


https://doi.org/10.3989/mc.2020.07519

J. F. Rivera
GMC (CENM), School of Materials Engineering, Universidad del Valle, Colombia
orcid https://orcid.org/0000-0003-0395-1517

A. Orobio
Applied Research in Construction Group (GRUA), School of Civil Engineering, Universidad del Valle, Colombia
orcid https://orcid.org/0000-0001-7166-3061

R. Mejía de Gutiérrez
GMC (CENM), School of Materials Engineering, Universidad del Valle, Colombia
orcid https://orcid.org/0000-0002-5404-2738

N. Cristelo
CQVR, Department of Engineering, University of Trás-os-Montes e Alto Douro, Portugal
orcid https://orcid.org/0000-0002-3600-1094

Abstract


In this study, a clayey soil classified as A-7-5 according ASTM D3282, was stabilized using alkali-activated cementitious materials (AAC) added to the soil dry in percentages of 20 and 30%. Fly ash (F1, F2) with high unburned carbon content (up to 38.76%), hydrated lime (L) and granulated blast furnace slag were used. Unconfined compressive strength and flexural strength at 28 days of curing and the durability after 12 wetting-drying cycles were evaluated. The results were compared with a soil-cement reference mixture. The soil treated with AAC-F1L showed a volume expansion of 0.51% and volume contraction of -0.57% compared with the 0.59% expansion and -0.68% contraction of the soil-cement reference mixture. Additionally, the mass loss after the wetting and drying cycles is only 3.74% which is slightly lower than the mass loss of the soil stabilized with ordinary Portland cement (OPC) (3.86%) and well below the value specified in Colombian regulations (7%).

Keywords


Soil stabilization; Clayey soil; Alkali-activated cement; Fly ash; Blast furnace slag

Full Text:


HTML PDF XML

References


Petry, T.M.; Little, D.N. (2002) Review of Stabilization of Clays and Expansive Soils in Pavements and Lightly Loaded Structures - History, Practice, and Future. J. Mater. Civ. Eng. 14[6], 447-460. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:6(447)

Behnood, A. (2018) Soil and clay stabilization with calcium-and non-calcium-based additives: A state-of-the-art review of challenges, approaches and techniques. Transp. Geotech. 17, Part A, 14-32. https://doi.org/10.1016/j.trgeo.2018.08.002

Shi, C.; Jiménez, A.F.; Palomo, A. (2011) New cements for the 21st century : The pursuit of an alternative to Portland cement. Cem. Concr. Res. 41[7], 750-763. https://doi.org/10.1016/j.cemconres.2011.03.016

Juenger, M.C.G.G.; Winnefeld, F.; Provis, J.L.; Ideker, J.H. (2011) Advances in alternative cementitious binders. Cem. Concr. Res. 41[12], 1232-1243. https://doi.org/10.1016/j.cemconres.2010.11.012

Palomo, A.; Krivenko, P.; Garcia-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernández-Jiménez, A. (2014) A review on alkaline activation: new analytical perspectives. Mater. Construcción. 64[315], e022. https://doi.org/10.3989/mc.2014.00314

Wilkinson, A.; Haque, A.; Kodikara, J. (2010) Stabilisation of clayey soils with industrial by-products: part B. Proc. Inst. Civ. Eng. - Gr. Improv. 163[13], 165-172. https://doi.org/10.1680/grim.2010.163.3.165

Cristelo, N.; Glendinning, S.; Fernandes, L.; Pinto, A.T.; Teixeira, A. (2012) Effect of calcium content on soil stabilisation with alkaline activation. Constr. Build. Mater. 29, 167-174. https://doi.org/10.1016/j.conbuildmat.2011.10.049

Cristelo, N.; Glendinning, S.; Miranda, T.; Oliveira, D.; Silva, R. (2012) Soil stabilisation using alkaline activation of fly ash for self compacting rammed earth construction. Constr. Build. Mater. 36, 727-35. https://doi.org/10.1016/j.conbuildmat.2012.06.037

Sargent, P.; Hughes, P.N.; Rouainia, M.; White, M.L. (2013) The use of alkali activated waste binders in enhancing the mechanical properties and durability of soft alluvial soils. Eng. Geol. 152[1], 96-108. https://doi.org/10.1016/j.enggeo.2012.10.013

Zhang, M.; Guo, H.; El-Korchi, T.; Zhang, G.; Tao, M. (2013) Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Constr. Build. Mater. 47, 1468-1478. https://doi.org/10.1016/j.conbuildmat.2013.06.017

Siddiqua, S.; Barreto, P.N.M. (2018) Chemical stabilization of rammed earth using calcium carbide residue and fly ash. Constr. Build. Mater. 169, 364-71. https://doi.org/10.1016/j.conbuildmat.2018.02.209

Ghadir, P.; Ranjbar, N. (2018) Clayey soil stabilization using geopolymer and Portland cement. Constr. Build. Mater. 188, 361-71. https://doi.org/10.1016/j.conbuildmat.2018.07.207

ASTM (American Society of Testing Materials). (2017) ASTM D6913/D6913M-17 Standard Test methods for Particle-Size Distribution (Gradation) of Soils Using sieve Analysis.

ASTM (American Society for Testing Materials). (2017) ASTM D4318 ? 17e1 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.

ASTM (American Society of Testing Materials). (2015) ASTM D3282-15 Standard Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes.

ASTM (American Society of Testing Materials). (2012) ASTM D1557-12e1 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 [kN-m/m3]))

Portland Cement Association. (1992) Soil-Cement Laboratory Handbook. Ed. Skokie, Illinois. 10-13 pp.

ASTM (American Society of Testing Materials). (2017) ASTM D1632-17 Standard Practice for Making and Curing Soil-Cement Compression and Flexure Test Specimens in the Laboratory.

ASTM (American Society of Testing Materials). (2017) ASTM D1633-17 Standard Test Methods for Compressive Strength of Molded Soil-Cement Cylinders.

ASTM ( American Society of Testing Materials). (2012) ASTM D1635/D1635M-12 Standard Test Method for Flexural Strength of Soil-Cement Using Simple Beam with Third-Point Loading.

ASTM (American Society of Testing Materials). (2015) ASTM D559/D559M-15 Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures. ASTM.

Oluwatuyi, O.E.; Adeola, B.O.; Alhassan, E.A.; Nnochiri, E.S.; Modupe, A.E.; Elemile O.O; Obayanju T.; Akerele G. (2018) Ameliorating effect of milled eggshell on cement stabilized lateritic soil for highway construction. Case Stud. Constr. Mater. 9, e00191. https://doi.org/10.1016/j.cscm.2018.e00191

Phummiphan, I.; Horpibulsuk, S.; Rachan, R.; Arulrajah, A.; Shen, S.; Chindaprasirt, P. (2017) High Calcium Fly Ash Geopolymer Stabilized Lateritic Soil and Granulated Blast Furnace Slag Blends as a Pavement Base Material. J. Hazard. Mater. 341, 257-267. https://doi.org/10.1016/j.jhazmat.2017.07.067 PMid:28797942

Sharma, A.K.; Sivapullaiah, P.V. (2016) Strength development in fly ash and slag mixtures with lime. Proc. Inst. Civ. Eng. - Ground Improv. 169[3], 194-205. https://doi.org/10.1680/jgrim.14.00024

Osinubi, K.J. (2006) Influence of Compactive Efforts on Lime-Slag Treated Tropical Black Clay. J. Mater. Civ. Eng. 18[2], 175-181. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:2(175)

Lee, S.; Seo, M.D.; Kim, Y.J.; Park, H.H.; Kim, T.N.; et al. (2010) Unburned carbon removal effect on compressive strength development in a honeycomb briquette ash-based geopolymer. Int. J. Miner. Process. 97[1-4], 20-25. https://doi.org/10.1016/j.minpro.2010.07.007

Shearer, C.R.; Provis, J.L.; Bernal, S.A.; Kurtis, K.E. (2016) Alkali-activation potential of biomass-coal co-fired fly ash. Cem. Concr. Compos. 73, 62-74. https://doi.org/10.1016/j.cemconcomp.2016.06.014

Fernández-Jimenez, A.; Palomo, A. (2003) Characterisation of fly ashes. Potential reactivity as alkaline cements. Fuel. 82[18], 2259-2265. https://doi.org/10.1016/S0016-2361(03)00194-7

van Deventer, J.S.J.; Provis, J.L.; Duxson, P.; Lukey, G.C. (2007) Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. J. Hazard. Mater. 139[3], 506-513. https://doi.org/10.1016/j.jhazmat.2006.02.044 PMid:16600483

Lemougna, P.N.; MacKenzie, K.J.D.D.; Jameson, G.N.L.L.; Rahier, H.; Chinje Melo, U.F. (2013) The role of iron in the formation of inorganic polymers (geopolymers) from volcanic ash: a 57Fe Mössbauer spectroscopy study. J. Mater. Sci. 48[15], 5280-5286. https://doi.org/10.1007/s10853-013-7319-4

Choi, S.C.; Lee, W.K. (2012) Effect of Fe2O3 on the Physical Property of Geopolymer Paste. Adv. Mater. Res. 586, 126-129. https://doi.org/10.4028/www.scientific.net/AMR.586.126

Lloyd, R.R.; Provis, J.L.; Van Deventer, J.S.J. (2009) Microscopy and microanalysis of inorganic polymer cements. 1: Remnant fly ash particles. J. Mater. Sci. 44[2], 608-619. https://doi.org/10.1007/s10853-008-3077-0

Chen, A.; Zhang, J. (2019) Strength and Deformation Characteristics of Silty Sand improved by Gravel. KSCE J. Civ. Eng. 23, 525-533. https://doi.org/10.1007/s12205-018-1047-x

Sarmadi, M.S.; Zohrevand, P.; Rezae, M. (2019) Effect of kerosene contamination on the physical and mechanical properties of sandy soil. Innov. Infrastruct. Solut. 4[1], 7. https://doi.org/10.1007/s41062-019-0196-1

Lee, W.K.W.; Van Deventer, J.S.J. (2002) The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements. Cem. Concr. Res. 32[4], 577-584. https://doi.org/10.1016/S0008-8846(01)00724-4

Chindaprasirt, P.; Phoo-ngernkham, T.; Hanjitsuwan, S.; Horpibulsuk, S.; Poowancum, A.; Injorhor, B. (2018) Effect of calcium-rich compounds on setting time and strength development of alkali-activated fly ash cured at ambient temperature. Case Stud. Constr. Mater. 9, e00198. https://doi.org/10.1016/j.cscm.2018.e00198

Al-Mukhtar, M.; Khattab, S.; Alcover, J.F. (2012) Microstructure and geotechnical properties of lime-treated expansive clayey soil. Eng. Geol. 139-140, 17-27 . https://doi.org/10.1016/j.enggeo.2012.04.004

Muntohar, A.S. (2011) Engineering characteristics of the compressed-stabilized earth brick. Constr. Build. Mater. 25[11], 4215-4220. https://doi.org/10.1016/j.conbuildmat.2011.04.061

Mandal, T.; Edil, T.B.; Tinjum, J.M. (2018) Study on flexural strength, modulus, and fatigue cracking of cementitiously stabilised materials. Road Mater. Pavement Des. 19[7], 1546-1562. https://doi.org/10.1080/14680629.2017.1325772

Kamon, M.; Gu, H.; Katsumi, T. (1999) Engineering Properties of Soil Stabilized by Ferum Lime and Use for the Application of Road Base. Soils Found. 39[1], 31-41. https://doi.org/10.3208/sandf.39.31

Nogami Shuji, J.; Villibor Fadul, D. (1995) Pavimentação de Baixo Custo com Solos Lateríticos (1a PARTE) Sao Paulo-SP-Brasil. 240 pp. Ed. Villibor.

Jiménez Rojas, J.W.; Consoli, N.C.; Heineck, K.S. (2008) Durabilidad de un suelo contaminado y tratado con cemento portland. Rev. Ing. Construcción. 23[3], 163-170. https://scielo.conicyt.cl/pdf/ric/v23n3/art04.pdf

INVIAS. (2013) Capítulo 3 Afirmados subbases y bases. Artículo 350-13 suelo-cemento. https://es.slideshare.net/ vrojas64/350-suelo-cemento-3




Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es