Materiales de Construcción, Vol 70, No 337 (2020)

Effect of high temperatures on the mechanical behaviour of hybrid cement


https://doi.org/10.3989/mc.2020.13318

B. Qu
Departmento de Ciencia de los Materiales, CIME. Universidad Politécnica de Madrid - Eduardo Torroja Institute for Construction Science (CSIC), Spain
orcid https://orcid.org/0000-0001-5893-0989

A. Fernández Jiménez
Eduardo Torroja Institute for Construction Science (CSIC), Spain
orcid https://orcid.org/0000-0002-5721-2923

A. Palomo
Eduardo Torroja Institute for Construction Science (CSIC), Spain
orcid https://orcid.org/0000-0002-6964-2269

A. Martin
Departmento de Ciencia de los Materiales -CIME. Universidad Politécnica de Madrid, Spain
orcid https://orcid.org/0000-0003-1291-948X

J. Y. Pastor
Departmento de Ciencia de los Materiales -CIME. Universidad Politécnica de Madrid, Spain
orcid https://orcid.org/0000-0003-3561-5999

Abstract


The high-temperature mechanical behaviour of a pre-industrial hybrid alkaline cement (HYC) was studied. The HYC in question contained 30 % Portland clinker and 70 % of a blend of slag, fly ash and a solid activator (mix of alkaline salts with a predominance of Na2SO4). The material was tested during exposure to high temperatures to establish its compressive and bending strength and elastic modulus, as well as fracture toughness, analysed using an innovative methodology to notch the hydrated cement paste specimens. Post-thermal treatment tests were also run to assess residual mechanical strength after 2 h of exposure to temperatures ranging from 400 °C to 1000 °C. TG/DTA, MIP and SEM were deployed to ascertain heat-induced physical-chemical changes in the structure. The higher mechanical strength during and after treatment exhibited by the hardened hybrid alkaline cement than the CEM I 42.5R ordinary portland cement (OPC) paste used as a reference was associated with the lower water and portlandite content found in HYC. Pseudo-plastic behaviour was observed at high temperatures in the loaded HYC in the tests conducted during exposure.

Keywords


Hybrid cement; High temperature; Mechanical behaviour; Fracture toughness; Porosity

Full Text:


HTML PDF XML

References


Taylor, H.F.W. (1997) Cement Chemistry, Thomas Telford, London. https://doi.org/10.1680/cc.25929

Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H. (2011) Sustainable cement production-present and future, Cem.Concr.Res. 41 [7] 642-650. https://doi.org/10.1016/j.cemconres.2011.03.019

Scrivener, K.; Snellings, R.; Lothenbach, B. (2016) A practical guide to microstructural analysis of cementitious materials, CRC Press, New York.

Piasta, J.; Sawicz, Z.; Rudzinski, L. (1984) Changes in the structure of hardened cement paste due to high temperature, Matériaux et Construction, 17, 291-296. https://doi.org/10.1007/BF02479085

Stepkowska, E.; Blanes, J.; Franco, F.; Real, C.; Pérez- Rodrıguez, J.; (2004) Phase transformation on heating of an aged cement paste, Thermochim. Acta, 420 [1-2], 79-87. https://doi.org/10.1016/j.tca.2003.11.057

Alonso, C.; Fernandez, L. (2004) Dehydration and rehydration processes of cement paste exposed to high-temperature environments, J. Mater. Sci. 39 [9], 3015-3024. https://doi.org/10.1023/B:JMSC.0000025827.65956.18

Handoo, S.K.; Agarwal, S.; Agarwal, S.K. (2002) Physicochemical, mineralogical, and morphological characteristics of concrete exposed to elevated temperatures, Cem.Concr.Res. 32 [7], 1009-1018. https://doi.org/10.1016/S0008-8846(01)00736-0

Habert, G.; Billard, C.; Rossi, P.; Chen, C.; Roussel, N. (2010) Cement production technology improvement compared to factor 4 objectives, Cem.Concr.Res. 40 [5], 820-826. https://doi.org/10.1016/j.cemconres.2009.09.031

Imbabi, M.S.; Carrigan, C.; McKenna, S.; (2012) Trends and developments in green cement and concrete technology, Int. J. Sustainable Built Environ. 1 [2], 194-216. https://doi.org/10.1016/j.ijsbe.2013.05.001

Martín-Sedeño, M.C.; Cuberos, A.J.M.; De la Torre, Á.G.; Álvarez-Pinazo, G.; Ordónez, L.M.; Gateshki, M.; Aranda, M.A.G. (2010) Aluminum-rich belite sulfoaluminate cements: Clinkering and early age hydration, Cem. Concr.Res. 40 [3], 359-369. https://doi.org/10.1016/j.cemconres.2009.11.003

Rivera, J.F.; Mejia, J.M.; Mejia de Gutierrez, R.; Gordillo, M. (2014) Hybrid cement based on the alkali activation of by-products of coal, Revista de la Construcción, 13 [2], 31-39. https://doi.org/10.4067/S0718-915X2014000200004

Sui, T.; Fan, L.; Wen, Z.; Wang, J.; (2015) Properties of Belite-Rich Portland Cement and Concrete in China, J. Civ. Engineering and Architecture, 4, 384-392.

Shi. C.; Fernández Jiménez, A.; Palomo A. (2011) New cements for the 21st century: The pursuit of an alternative to Portland cement, Cem.Concr.Res.,41[7]:750-763. https://doi.org/10.1016/j.cemconres.2011.03.016

Pacheco-Torgal, F.; Castro-Gomes, J.; Jalali, S. (2008) Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products, Constr. Build. Mater. 22 [7], 1305-1314. https://doi.org/10.1016/j.conbuildmat.2007.10.015

Barbosa, V.F.; MacKenzie, K.J. (2003) Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate, Mater. Res. Bull. 38 [2], 319-331. https://doi.org/10.1016/S0025-5408(02)01022-X

Wang, H. (2008) The effects of elevated temperature on cement paste containing GGBFS, Cem. Concr. Compos. 30 [10], 992-999. https://doi.org/10.1016/j.cemconcomp.2007.12.003

Valencia Saavedra, W.G.; Mejía de Gutiérrez, R. (2017) Performance of geopolymer concrete composed of fly ash after exposure to elevated temperatures, Constr. Build. Mater. 154, 229-235. https://doi.org/10.1016/j.conbuildmat.2017.07.208

Rovnaník, P.; Bayer, P.; Rovnaníková, P. (2013) Characterization of alkali-activated slag paste after exposure to high temperatures, Constr. Build. Mater. 47, 1479- 1487. https://doi.org/10.1016/j.conbuildmat.2013.06.070

?kvára, F.; Jílek, T.; Kopeck?, L. (2005) Geopolymer materials based on fly ash, Ceram.-Silik. 49 [3], 195-204.

Bakharev, T. (2006) Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing, Cem.Concr.Res. 36 [6], 1134-1147. https://doi.org/10.1016/j.cemconres.2006.03.022

Garcia-Lodeiro, I.; Palomo, A.; Fernández-Jiménez, A.; Macphee, D.E. (2011) Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O, Cem.Concr.Res. 41 [9], 923-931. https://doi.org/10.1016/j.cemconres.2011.05.006

Alahrache, S.; Winnefeld, F.; Champenois, J.-B.; Hesselbarth, F.; Lothenbach, B. (2016) Chemical activation of hybrid binders based on siliceous fly ash and Portland cement, Cem. Concr. Compos. 66, 10-23. https://doi.org/10.1016/j.cemconcomp.2015.11.003

Qu, B.; Martin, A.; Pastor, J.; Palomo, A.; Fernández- Jiménez, A. (2016) Characterisation of pre-industrial hybrid cement and effect of pre-curing temperature, Cem. Concr. Compos. 73, 281-288. https://doi.org/10.1016/j.cemconcomp.2016.07.019

Fernández-Jiménez, A.; Garcia-Lodeiro, I.; Maltseva, O.; Palomo, A. (2018) Hydration mechanisms of hybrid cements as a function of the way of addition of chemicals, J. Am. Ceram. Soc. 102, 427-436. https://doi.org/10.1111/jace.15939

Luukkonen, T.; Abdollahnejad, Z.; Yliniemi, J.; Kinnunen, P.; Illikainen, M. (2018) One-part alkali-activated materials: A review, Cem. Concr. Res. 103, 21-34. https://doi.org/10.1016/j.cemconres.2017.10.001

L'Hôpital, E.; Lothenbach, B.; Scrivener, K.; Kulik, D.A. (2016) Alkali uptake in calcium alumina silicate hydrate (C-A-S-H), Cem.Concr.Res. 85, 122-136. https://doi.org/10.1016/j.cemconres.2016.03.009

Garcia-Lodeiro, I.; Fernandez-Jimenez, A.; Palomo, A. (2013) Hydration kinetics in hybrid binders: Early reaction stages, Cem. Concr. Compos. 39, 82-92. https://doi.org/10.1016/j.cemconcomp.2013.03.025

Kovalchuk, G.; Krienko, P.V. (2009)12 - Producing fire-and heat-resistant geopolymers, in J.L. Provis, J.S.J. van Deventer (Eds.) Geopolymers, pp 227-266. Woodhead Publishing. https://doi.org/10.1533/9781845696382.2.227

Aranda, M.A.G.; De La Torre, A.G.; León-Reina, L. (2012) Rietveld quantitative phase analysis of OPC clinkers, cements and hydration products, Rev. Mineral. Geochem. 74 [1], 169-209. https://doi.org/10.2138/rmg.2012.74.5

Timoshenko, S.P.; Young, D.H. (1956) Engineering mechanics, New York.

Kübler, J. (1999) Fracture toughness of ceramics using the SEVNB method; round robin. In ECF13, San Sebastian 2000.

Fernández-Jiménez, A.; Palomo, A.; Pastor, J.Y.; Martín, A.; (2008) New cementitious materials based on alkali-activated aly ash: performance at high temperatures, J. Am. Ceram. Soc. 91 [10], 3308-3314. https://doi.org/10.1111/j.1551-2916.2008.02625.x

Fernández-Jiménez, A.; Pastor, J.Y.; Martín, A.; Palomo, A. (2010) High-temperature resistance in alkali-activated cement, J. Am. Ceram. Soc. 93[10], 3411-3417. https://doi.org/10.1111/j.1551-2916.2010.03887.x

Martin, A.; Pastor, J.Y.; Palomo, A.; Fernández-Jiménez, A. (2015) Mechanical behaviour at high temperature of alkali-activated aluminosilicates (geopolymers), Constr. Build. Mater. 93, 1188-1196. https://doi.org/10.1016/j.conbuildmat.2015.04.044

Stepkowska, E.; Perez-Rodriguez, J.; De Haro, M.J.; Sayagues, M. (2002) Study of hydration of two cements of different strengths, J. Therm. Anal. Calorim. 69, 187-204. https://doi.org/10.1023/A:1019902210255

Donatello, S.; Kuenzel, C.; Palomo, A.; Fernández-Jiménez, A. (2014) High-temperature resistance of a very high volume fly ash cement paste, Cem. Concr. Compos. 45, 234-242. https://doi.org/10.1016/j.cemconcomp.2013.09.010

Swartz, S.; Yap, S. (1986) Evaluation of recently proposed recommendations for the determination of fracture parameters for concrete in bending. In Experimental Stress Analysis, pp. 233-244. Springer . https://doi.org/10.1007/978-94-009-4416-9_27 PMid:10285024

Nallathambi, P.; Karihaloo, B.; Heaton, B. (1984) Effect of specimen and crack sizes, water/cement ratio and coarse aggregate texture upon fracture toughness of concrete, Mag. Concr. Res. 36 [129], 227-236. https://doi.org/10.1680/macr.1984.36.129.227

Sih G.C. (1984)Fracture mechanics of engineering structural components. In: Sih G.C., de Oliveira Faria L. (eds) Fracture Mechanics Methodology. Engineering Applications of Fracture Mechanics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6134-0

Elices, M.; Planas, J. (1996) Fracture mechanics parameters of concrete: an overview, Adv. Cement. Base.Mater . 4 [3-4], 116-127. https://doi.org/10.1016/S1065-7355(96)00072-7

Djaknoun, S.; Ouedraogo, E.; Benyahia, A.A. (2012) Characterisation of the behaviour of high-performance mortar subjected to high temperatures, Constr. Build. Mater. 28 [1], 176-186. https://doi.org/10.1016/j.conbuildmat.2011.07.063

Sukontasukkul, P.; Pomchiengpin, W.; Songpiriyakij, S. (2010) Post-crack (or post-peak) flexural response and toughness of fibre reinforced concrete after exposure to high temperature, Constr. Build. Mater. 24 [10], 1967-1974. https://doi.org/10.1016/j.conbuildmat.2010.04.003

Sarker, P.K.; Haque, R.; Ramgolam, K.V. (2013) Fracture behaviour of heat cured fly ash based geopolymer concrete, Mater. Des. 44, 580-586. https://doi.org/10.1016/j.matdes.2012.08.005

Guinea, G. Pastor, J.Y.; Planas, J.; Elices, M. (1998) Stress intensity factor, compliance and CMOD for a general three-point-bend beam, Int. J. Fract. 89 [2], 103-116. https://doi.org/10.1023/A:1007498132504

Silva, D.A.; John, V.M.; Ribeiro, J.L.D.; Roman, H.R. (2001) Pore size distribution of hydrated cement pastes modified with polymers, Cem.Concr.Res. 31 [8], 1177-1184. https://doi.org/10.1016/S0008-8846(01)00549-X

Qu, B., (2018) Temperature effect on performance of Portland cement versus advanced hybrid cements and alkali-fly ash cement, PhD thesis, Department of Materials Science, E.T.S.I. Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain.

Qu, B., Martin, A.; Pastor, J.Y.; Palomo, A.; Fernández- Jiménez, A. (2019) Characterization of alkaline hybrid cement after exposure to high temperature, J. Am. Ceram. Soc. Submitted.

Puertas, F.; Palacios, M.; Manzano, H.; Dolado, J.S. ; Rico, A.; Rodríguez, J. (2011) A model for the C-A-S-H gel formed in alkali-activated slag cements, J. Eur. Ceram. Soc. 31 [12], 2043-2056. https://doi.org/10.1016/j.jeurceramsoc.2011.04.036

Shi, C.; Day, R.L. (2000) Pozzolanic reaction in the presence of chemical activators: Part I. Reaction kinetics, Cem.Concr.Res. 30 [1], 51-58. https://doi.org/10.1016/S0008-8846(99)00205-7

Shi, C.; Day, R.L. (2000) Pozzolanic reaction in the presence of chemical activators: Part II - Reaction products and mechanism, Cem.Concr.Res., 30 [4], 607-613. https://doi.org/10.1016/S0008-8846(00)00214-3

Sánchez-Herrero, M.J.; Fernández-Jiménez, A.; Palomo, A. (2017) C3S and C2S hydration in the presence of Na2CO3 and Na2SO4, J. Am. Ceram. Soc. 100 [7], 3188-3198. https://doi.org/10.1111/jace.14855

Pan, Z.; Sanjayan, J.G.; (2010) Stress-strain behaviour and abrupt loss of stiffness of geopolymer at elevated temperatures, Cem. Concr. Compos. 32 [9], 657-664. https://doi.org/10.1016/j.cemconcomp.2010.07.010

Pan, Z.; Sanjayan, J.G.; (2012) Factors influencing softening temperature and hot-strength of geopolymers, Cem. Concr. Compos. 34 [2], 261-264. https://doi.org/10.1016/j.cemconcomp.2011.09.019




Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es