Materiales de Construcción, Vol 70, No 338 (2020)

Fatigue performance evaluation of bitumen mastics reinforced with polyolefins through a dissipated energy approach


https://doi.org/10.3989/mc.2020.09319

C. Roman
Departamento de Ingeniería Química, Centro de Investigación en Tecnología de Productos y Procesos Químicos (Pro2TecS), Campus de “El Carmen”, Universidad de Huelva, Spain
orcid https://orcid.org/0000-0002-7960-5832

M. A. Delgado
Departamento de Ingeniería Química, Centro de Investigación en Tecnología de Productos y Procesos Químicos (Pro2TecS), Campus de “El Carmen”, Universidad de Huelva, Spain
orcid https://orcid.org/0000-0003-0573-7987

M. García-Morales
Departamento de Ingeniería Química, Centro de Investigación en Tecnología de Productos y Procesos Químicos (Pro2TecS), Campus de “El Carmen”, Universidad de Huelva, Spain
orcid https://orcid.org/0000-0003-4153-487X

Abstract


Polymers are known to improve the fatigue resistance of sphalt mastics. However, undesirable results can be obtained if the polymer is not successfully integrated into the bitumen binder. The goal of this work is to evaluate the effect of the addition of three selected polyolefins on their mastic’s fatigue performance. Low and high density polyethylenes (LDPE and HDPE) and polypropylene (PP) were chosen and used at the concentration of 4 wt.%. A dissipated energy approach was used in order to analyze the fatigue resistance, at 25 ºC, of the three composites studied. Dynamic time sweeps at and above the linear viscoelastic threshold were carried out. Based on that, the results demonstrated a better improvement when the LDPE was considered. For that binder, fluorescence optical microscopy observations at 25 ºC provided morphological evidence of a more homogeneous bitumen-polymer distribution which could be behind the improved fatigue behavior.

Keywords


Fatigue; Rheology; Polymer; Microstructure; Characterization

Full Text:


HTML PDF XML

References


Shen, S.; Airey, G.D.; Carpenter, S.H.; Huang, H. (2006) A Dissipated Energy Approach to Fatigue Evaluation. Road Mater. Pavement Des. 7 [1], 47–69.

Moreno-Navarro, F.; Rubio-Gámez, M.C. (2016) A review of fatigue damage in bituminous mixtures: Understanding the phenomenon from a new perspective. Constr. Building Mater. 113, 927–938.

Frigio, F.; Ferrotti, G.; Cardone, F. (2016) Fatigue rheo­logical characterization of polymer-modified bitumens and mastics. In: Proceedings 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials, RILEM Bookseries 11, (2016), 655–666.

Slebi-Acevedo, C.J.; Pascual-Muñoz, P.; Lastra-González, P.; Castro-Fresno, D. (2019) A multi-criteria decision-mak­ing analysis for the selection of fibres aimed at reinforcing asphalt concrete mixtures. Int. J. Pavement Eng.

Slebi-Acevedo, C.J.; Lastra-González, P.; Pascual- Muñoz, P.; Castro-Fresno, D. (2019) Mechanical per­formance of fibers in hot mix asphalt: A review. Constr. Build. Mat. 200, 756–769.

Santagata, E.; Baglieri, O.; Dalmazzo, D. (2008) Experimental investigation on the fatigue damage behav­iour of modified bituminous binders and mastics. In: Asphalt paving technology, Association of asphalt paving technologists - Proceedings of the technical sessions 77, (2008), 851-883.

Maggiore, C.; Grenfell, J.; Airey, G.D. (2012) Evaluation of Fatigue Life Using Dissipated Energy Methods. In: 7th RILEM International Conference on Cracking in Pavements, RILEM Bookseries 4, (2012), 643–652.

Micaelo, R.; Pereira, A.; Quaresma, L.; Cidade, M.T. (2015) Fatigue resistance of asphalt binders: Assessment of the analysis methods in strain-controlled tests. Constr. Build. Mat. 98, 703–712.

Yuan, M-M.; Zhang, X-N.; Chen W-Q.; Zhang, S-X. (2013) Ratio of Dissipated Energy Change-based Failure Criteria of Asphalt Mixtures. Res. J. Appl. Sci. Eng. Tech. 6 [14], 2514-2519.

Hyun, K.; Wilhelm, M.; Klein, C.O.; Cho, K.S.; Nam, J.G.; Ahn, K.H.; Lee, S.; Ewoldt, R.H.; Mckinley, G.H. (2011) A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Prog. Polym. Sci. 36 [12], 1697–1753.

Teixeira Franco Castelo Branco, V. (2008) A unified method for the analysis of nonlinear viscoelasticity and fatigue cracking of asphalt mixtures using the dynamic mechani­cal analyzer, Texas A&M University PhD Dissertation.

Isailovic, I.; Cannone-Falchetto, A.; Wistuba, M.P. (2015) Investigation of asphalt recovery properties in fatigue test with single rest period. In: Proceedings of the 6th International Conference on Bituminous Mixtures and Pavements (Thessaloniki), (2015), 373–378.

Shen, S.; Carpenter, S.H. (2005) Application of the Dissipated Energy Concept in Fatigue Endurance Limit Testing. Transp. Res. Record: J. Transp. Res. Board 1929 [1], 165–173.

Guglielmo, J.; Peebles, G.; Mehta, Y. (2014) Evaluation of Fatigue Behavior of Neat and Polymer Modified Binders and Mastics Using

Brasileiro, L.; Moreno-Navarro, F.; Tauste, R.; Matos, J.; Rubio-Gámez, M.C. (2019) Reclaimed Polymers as Asphalt Binder Modifiers for More Sustainable Roads: A Review. Sustainability 11 [3], 646.

Garcia-Trave, G.; Tauste, R.; Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M.C. (2016) Use of Reclaimed Geomembranes for Modification of Mechanical Performance of Bituminous Binders. J. Mater. Civ. Eng. 28 [7], 04016021.

Brovelli, C.; Crispino, M.; Pais, J.C.; Pereira, P. (2014) Assessment of Fatigue Resistance of Additivated Asphalt Concrete incorporated Fibers and Polymers. J. Mater. Civ. Eng. 26 [3], 554–558.

López-Montero, T.; Miró, R. (2017) Ageing and tem­perature effect on the fatigue performance of bituminous mixtures. Mater. Construcc. 67 [327], e126.

Jiménez del Barco-Carrión, A.; García-Travé, G.; Moreno- Navarro, F.; Martínez-Montes, G.; Rubio-Gámez, M.C. Comparison of the effect of recycled crumb rubber and polymer concentration on the performance of binders for asphalt mixtures. Mater. Construcc. 66 [323], e090.

Lacalle-Jiménez, H.I.; Edwards, J.P.; Thom, N.H. (2017) Analysis of stiffness and fatigue resistance of cold recy­cled asphalt mixtures manufactured with foamed bitu­men for their application to airfield pavement design. Mater. Construcc. 67 [327], e127.

Moreno-Navarro, F.; Rubio-Gámez, M.C.; Tomás- Fortún, E.; Valor-Hernández, F.; Ramírez-Rodríguez, A. (2014) Evaluation of the fatigue macro-cracking behavior of crumb rubber modified bituminous mixes. Mater. Construcc. 64 [315], e027.

Ayar, P.; Moreno-Navarro, F. Rubio-Gamez, M.C. (2016) The healing capability of asphalt pavements: a state of the art review. J. Cleaner Prod. 113, 28–40.

Ayar, P.; Moreno-Navarro, F.; Sol-Sanchez, M.; Rubio- Gamez, M.C. (2018) Exploring the recovery of fatigue damage in bituminous mixtures: the role of rest peri­ods. Mat. Struct. 51 [1], 25.

Moreno-Navarro, F.; Ayar, P.; Sol-Sanchez, M.; Rubio- Gamez, M.C. (2017) Exploring the recovery of fatigue damage in bituminous mixtures at macro-crack level: the influence of temperature, time, and external loads. Road Mat. Pavement Design 18, 293–303.

Moreno-Navarro, F.; Sol-Sanchez, M.; Rubio-Gamez, M.C. (2015) Exploring the recovery of fatigue damage in bituminous mixtures: the role of healing”. Road Mat. Pavement Design 16 [Issue sup1: EATA], 75–89.

Roman, C.; Garcia-Morales, M. (2017) Linear rheology of bituminous mastics modified with various polyolefins: a comparative study with their source binders. Mat. Struct. 50 [1], 86.

Safaei, F.; Hintz, C. (2014) Investigation of the effect of temperature on asphalt binder fatigue. In: Asphalt Pavements, Proceedings of the international conference on asphalt pavements (Rayleigh) 1, (2014), 1491–1500.

Artamendi, I.; Khalid, H. (2004) Different approaches to depict fatigue of bituminous materials. In: Proceedings of the 15th European Conference of Fracture (Stockholm), (2004).

Van Dijk, W.; Moreaud, H.; Quedeville, A.; Uge, P. (1972) The Fatigue of Bitumen and Bituminous Mixes. In: Proceedings of the Third International Conference on the Structural Design of Asphalt Pavements (London) 1, (1972), 354–366.

Qiu, J.; van de Ven, M.; Wu, S.; Yu, J.; Molenar, A. (2012) Evaluating Self Healing Capability of Bituminous Mastics. Exper. Mech. 52, 1163–1171.

Yuliestyan, A.; Cuadri, A.A.; García-Morales, M.; Partal, P. (2016) Influence of polymer melting point and Melt Flow Index on the performance of ethylene-vinyl-acetate modified bitumen for reduced-temperature applica­tion. Mat. Design 96, 180–188.

Yousefi A.A. (2003) Polyethylene dispersions in bitu­men: The effects of the polymer structural parameters. J. Appl. Polym. Sci. 90, 3183–3190.

Polacco, G.; Filippi, S.; Merusi, F.; Stastna, G. (2015) A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compat­ibility. Adv. Colloid. Interface Sci. 224, 72–112.




Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es