Fatigue performance evaluation of bitumen mastics reinforced with polyolefins through a dissipated energy approach

Authors

  • C. Roman Departamento de Ingeniería Química, Centro de Investigación en Tecnología de Productos y Procesos Químicos (Pro2TecS), Campus de “El Carmen”, Universidad de Huelva https://orcid.org/0000-0002-7960-5832
  • M. A. Delgado Departamento de Ingeniería Química, Centro de Investigación en Tecnología de Productos y Procesos Químicos (Pro2TecS), Campus de “El Carmen”, Universidad de Huelva https://orcid.org/0000-0003-0573-7987
  • M. García-Morales Departamento de Ingeniería Química, Centro de Investigación en Tecnología de Productos y Procesos Químicos (Pro2TecS), Campus de “El Carmen”, Universidad de Huelva https://orcid.org/0000-0003-4153-487X

DOI:

https://doi.org/10.3989/mc.2020.09319

Keywords:

Fatigue, Rheology, Polymer, Microstructure, Characterization

Abstract


Polymers are known to improve the fatigue resistance of sphalt mastics. However, undesirable results can be obtained if the polymer is not successfully integrated into the bitumen binder. The goal of this work is to evaluate the effect of the addition of three selected polyolefins on their mastic’s fatigue performance. Low and high density polyethylenes (LDPE and HDPE) and polypropylene (PP) were chosen and used at the concentration of 4 wt.%. A dissipated energy approach was used in order to analyze the fatigue resistance, at 25 ºC, of the three composites studied. Dynamic time sweeps at and above the linear viscoelastic threshold were carried out. Based on that, the results demonstrated a better improvement when the LDPE was considered. For that binder, fluorescence optical microscopy observations at 25 ºC provided morphological evidence of a more homogeneous bitumen-polymer distribution which could be behind the improved fatigue behavior.

Downloads

Download data is not yet available.

References

Shen, S.; Airey, G.D.; Carpenter, S.H.; Huang, H. (2006) A Dissipated Energy Approach to Fatigue Evaluation. Road Mater. Pavement Des. 7 [1], 47-69. https://doi.org/10.1080/14680629.2006.9690026

Moreno-Navarro, F.; Rubio-Gámez, M.C. (2016) A review of fatigue damage in bituminous mixtures: Understanding the phenomenon from a new perspective. Constr. Building Mater. 113, 927-938. https://doi.org/10.1016/j.conbuildmat.2016.03.126

Frigio, F.; Ferrotti, G.; Cardone, F. (2016) Fatigue rheo­logical characterization of polymer-modified bitumens and mastics. In: Proceedings 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials, RILEM Bookseries 11, (2016), 655-666. https://doi.org/10.1007/978-94-017-7342-3_53

Slebi-Acevedo, C.J.; Pascual-Muñoz, P.; Lastra-González, P.; Castro-Fresno, D. (2019) A multi-criteria decision-mak­ing analysis for the selection of fibres aimed at reinforcing asphalt concrete mixtures. Int. J. Pavement Eng. https://doi.org/10.1080/10298436.2019.1645848

Slebi-Acevedo, C.J.; Lastra-González, P.; Pascual- Muñoz, P.; Castro-Fresno, D. (2019) Mechanical per­formance of fibers in hot mix asphalt: A review. Constr. Build. Mat. 200, 756-769. https://doi.org/10.1016/j.conbuildmat.2018.12.171

Santagata, E.; Baglieri, O.; Dalmazzo, D. (2008) Experimental investigation on the fatigue damage behav­iour of modified bituminous binders and mastics. In: Asphalt paving technology, Association of asphalt paving technologists - Proceedings of the technical sessions 77, (2008), 851-883.

Maggiore, C.; Grenfell, J.; Airey, G.D. (2012) Evaluation of Fatigue Life Using Dissipated Energy Methods. In: 7th RILEM International Conference on Cracking in Pavements, RILEM Bookseries 4, (2012), 643-652. https://doi.org/10.1007/978-94-007-4566-7_63

Micaelo, R.; Pereira, A.; Quaresma, L.; Cidade, M.T. (2015) Fatigue resistance of asphalt binders: Assessment of the analysis methods in strain-controlled tests. Constr. Build. Mat. 98, 703-712. https://doi.org/10.1016/j.conbuildmat.2015.08.070

Yuan, M-M.; Zhang, X-N.; Chen W-Q.; Zhang, S-X. (2013) Ratio of Dissipated Energy Change-based Failure Criteria of Asphalt Mixtures. Res. J. Appl. Sci. Eng. Tech. 6 [14], 2514-2519. https://doi.org/10.19026/rjaset.6.3731

Hyun, K.; Wilhelm, M.; Klein, C.O.; Cho, K.S.; Nam, J.G.; Ahn, K.H.; Lee, S.; Ewoldt, R.H.; Mckinley, G.H. (2011) A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Prog. Polym. Sci. 36 [12], 1697-1753. https://doi.org/10.1016/j.progpolymsci.2011.02.002

Teixeira Franco Castelo Branco, V. (2008) A unified method for the analysis of nonlinear viscoelasticity and fatigue cracking of asphalt mixtures using the dynamic mechani­cal analyzer, Texas A&M University PhD Dissertation.

Isailovic, I.; Cannone-Falchetto, A.; Wistuba, M.P. (2015) Investigation of asphalt recovery properties in fatigue test with single rest period. In: Proceedings of the 6th International Conference on Bituminous Mixtures and Pavements (Thessaloniki), (2015), 373-378. https://doi.org/10.1201/b18538-54

Shen, S.; Carpenter, S.H. (2005) Application of the Dissipated Energy Concept in Fatigue Endurance Limit Testing. Transp. Res. Record: J. Transp. Res. Board 1929 [1], 165-173. https://doi.org/10.1177/0361198105192900120

Guglielmo, J.; Peebles, G.; Mehta, Y. (2014) Evaluation of Fatigue Behavior of Neat and Polymer Modified Binders and Mastics Using

Brasileiro, L.; Moreno-Navarro, F.; Tauste, R.; Matos, J.; Rubio-Gámez, M.C. (2019) Reclaimed Polymers as Asphalt Binder Modifiers for More Sustainable Roads: A Review. Sustainability 11 [3], 646. https://doi.org/10.3390/su11030646

Garcia-Trave, G.; Tauste, R.; Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M.C. (2016) Use of Reclaimed Geomembranes for Modification of Mechanical Performance of Bituminous Binders. J. Mater. Civ. Eng. 28 [7], 04016021. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001507

Brovelli, C.; Crispino, M.; Pais, J.C.; Pereira, P. (2014) Assessment of Fatigue Resistance of Additivated Asphalt Concrete incorporated Fibers and Polymers. J. Mater. Civ. Eng. 26 [3], 554-558. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000837

López-Montero, T.; Miró, R. (2017) Ageing and tem­perature effect on the fatigue performance of bituminous mixtures. Mater. Construcc. 67 [327], e126. https://doi.org/10.3989/mc.2017.04216

Jiménez del Barco-Carrión, A.; García-Travé, G.; Moreno- Navarro, F.; Martínez-Montes, G.; Rubio-Gámez, M.C. Comparison of the effect of recycled crumb rubber and polymer concentration on the performance of binders for asphalt mixtures. Mater. Construcc. 66 [323], e090. https://doi.org/10.3989/mc.2016.08815

Lacalle-Jiménez, H.I.; Edwards, J.P.; Thom, N.H. (2017) Analysis of stiffness and fatigue resistance of cold recy­cled asphalt mixtures manufactured with foamed bitu­men for their application to airfield pavement design. Mater. Construcc. 67 [327], e127. https://doi.org/10.3989/mc.2017.04616

Moreno-Navarro, F.; Rubio-Gámez, M.C.; Tomás- Fortún, E.; Valor-Hernández, F.; Ramírez-Rodríguez, A. (2014) Evaluation of the fatigue macro-cracking behavior of crumb rubber modified bituminous mixes. Mater. Construcc. 64 [315], e027. https://doi.org/10.3989/mc.2014.07913

Ayar, P.; Moreno-Navarro, F. Rubio-Gamez, M.C. (2016) The healing capability of asphalt pavements: a state of the art review. J. Cleaner Prod. 113, 28-40. https://doi.org/10.1016/j.jclepro.2015.12.034

Ayar, P.; Moreno-Navarro, F.; Sol-Sanchez, M.; Rubio- Gamez, M.C. (2018) Exploring the recovery of fatigue damage in bituminous mixtures: the role of rest peri­ods. Mat. Struct. 51 [1], 25. https://doi.org/10.1617/s11527-018-1146-7

Moreno-Navarro, F.; Ayar, P.; Sol-Sanchez, M.; Rubio- Gamez, M.C. (2017) Exploring the recovery of fatigue damage in bituminous mixtures at macro-crack level: the influence of temperature, time, and external loads. Road Mat. Pavement Design 18, 293-303. https://doi.org/10.1080/14680629.2017.1305149

Moreno-Navarro, F.; Sol-Sanchez, M.; Rubio-Gamez, M.C. (2015) Exploring the recovery of fatigue damage in bituminous mixtures: the role of healing". Road Mat. Pavement Design 16 [Issue sup1: EATA], 75-89. https://doi.org/10.1080/14680629.2015.1029706

Roman, C.; Garcia-Morales, M. (2017) Linear rheology of bituminous mastics modified with various polyolefins: a comparative study with their source binders. Mat. Struct. 50 [1], 86. https://doi.org/10.1617/s11527-016-0953-y

Safaei, F.; Hintz, C. (2014) Investigation of the effect of temperature on asphalt binder fatigue. In: Asphalt Pavements, Proceedings of the international conference on asphalt pavements (Rayleigh) 1, (2014), 1491-1500. https://doi.org/10.1201/b17219-181

Artamendi, I.; Khalid, H. (2004) Different approaches to depict fatigue of bituminous materials. In: Proceedings of the 15th European Conference of Fracture (Stockholm), (2004).

Van Dijk, W.; Moreaud, H.; Quedeville, A.; Uge, P. (1972) The Fatigue of Bitumen and Bituminous Mixes. In: Proceedings of the Third International Conference on the Structural Design of Asphalt Pavements (London) 1, (1972), 354-366.

Qiu, J.; van de Ven, M.; Wu, S.; Yu, J.; Molenar, A. (2012) Evaluating Self Healing Capability of Bituminous Mastics. Exper. Mech. 52, 1163-1171. https://doi.org/10.1007/s11340-011-9573-1

Yuliestyan, A.; Cuadri, A.A.; García-Morales, M.; Partal, P. (2016) Influence of polymer melting point and Melt Flow Index on the performance of ethylene-vinyl-acetate modified bitumen for reduced-temperature applica­tion. Mat. Design 96, 180-188. https://doi.org/10.1016/j.matdes.2016.02.003

Yousefi A.A. (2003) Polyethylene dispersions in bitu­men: The effects of the polymer structural parameters. J. Appl. Polym. Sci. 90, 3183-3190. https://doi.org/10.1002/app.12942

Polacco, G.; Filippi, S.; Merusi, F.; Stastna, G. (2015) A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compat­ibility. Adv. Colloid. Interface Sci. 224, 72-112. https://doi.org/10.1016/j.cis.2015.07.010 PMid:26277208

Published

2020-06-30

How to Cite

Roman, C., Delgado, M. A., & García-Morales, M. (2020). Fatigue performance evaluation of bitumen mastics reinforced with polyolefins through a dissipated energy approach. Materiales De Construcción, 70(338), e217. https://doi.org/10.3989/mc.2020.09319

Issue

Section

Research Articles