Preliminary study on the upcycle of non-structural construction and demolition waste for waste cleaning

Authors

DOI:

https://doi.org/10.3989/mc.2020.13819

Keywords:

Concrete, Heavy metals, Waste treatment, Adsorption, Characterization

Abstract


This study proposes a method to convert non-structural calcium-rich construction and demoli­tion waste fines into adsorbents of heavy metal ions by mixing waste fines with diammonium hydrogen phos­phate solution to produce hydroxyapatite, which has high surface areas and excellent ion-exchange capacity with heavy metal ions. As a result, environmental polluting waste is converted into environmentally cleaning material. Waste putty powders was chosen as the representative waste to investigate the detailed formation process of hydroxyapatite and the key reaction parameters of the reaction. Results showed that hydroxyapatite can be pro­duced on waste putty particles. Higher ageing temperatures or longer ageing duration are beneficial to the yield and crystallinity of the produced hydroxyapatite. Adsorption testing confirmed that Ni2+ can replace Ca2+ in the hydroxyapatite lattice, leading to the formation of a new crystal, arupite (Ni3(PO4)2•8H2O), and contributing to a modest adsorption capacity for Ni2+ (15 mg/g) for the hydroxyapatite-containing waste putty.

Downloads

Download data is not yet available.

References

Behera, M.; Bhattacharyya, S.K.; Minocha, A.K.; Deoliya, R.; Maiti, S. (2014) Recycled aggregate from C&D waste & its use in concrete - A breakthrough towards sustainability in construction sector: A review. Constr. Build. Mater. 68, 501-516. https://doi.org/10.1016/j.conbuildmat.2014.07.003

Evangelista, L.; de Brito, J. (2014) Concrete with fine recycled aggregates: a review. Eur. J. Environ. Civ. Eng. 18, 129-172. https://doi.org/10.1080/19648189.2013.851038

Silva, R.V.; Neves, R.; de Brito, J.; Dhir, R.K. (2015) Carbonation behaviour of recycled aggregate concrete. Cem. Concr. Compos. 62, 22-32. https://doi.org/10.1016/j.cemconcomp.2015.04.017

Zhang, Z.; Zhang, Y.; Yan, C.; Liu, Y. (2017) Influence of crushing index on properties of recycled aggregates pervi­ous concrete. Constr. Build. Mater. 135, 112-118. https://doi.org/10.1016/j.conbuildmat.2016.12.203

Bravo, M.; de Brito, J.; Pontes, J.; Evangelista, L. (2015) Durability performance of concrete with recycled aggre­gates from construction and demolition waste plants. Constr. Build. Mater. 77, 357-369. https://doi.org/10.1016/j.conbuildmat.2014.12.103

Butler, L.; West, J.S.; Tighe, S.L. (2011) The effect of recy­cled concrete aggregate properties on the bond strength between RCA concrete and steel reinforcement. Cem. Concr. Res. 41 [10], 1037-1049. https://doi.org/10.1016/j.cemconres.2011.06.004

Chen, P.; Wang, J.; Wang, L.; Xu, Y.; Qian, X.; Ma, H. (2017) Producing vaterite by CO2 sequestration in the waste solution of chemical treatment of recycled con­crete aggregates. J. Clean. Prod. 149, 735-742. https://doi.org/10.1016/j.jclepro.2017.02.148

Lee, N.K.; Abate, S.Y.; Kim, H.-K. (2018) Use of recycled aggregates as internal curing agent for alkali-activated slag system. Constr. Build. Mater. 159, 286-296. https://doi.org/10.1016/j.conbuildmat.2017.10.110

Li, W.; Xiao, J.; Sun, Z.; Kawashima, S.; Shah, S.P. (2012) Interfacial transition zones in recycled aggregate concrete with different mixing approaches. Constr. Build. Mater. 35, 1045-1055. https://doi.org/10.1016/j.conbuildmat.2012.06.022

Wang, L.; Wang, J.; Qian, X.; Chen, P.; Xu, Y.; Guo, J. (2017) An environmentally friendly method to improve the quality of recycled concrete aggregates. Constr. Build. Mater. 144, 432-441. https://doi.org/10.1016/j.conbuildmat.2017.03.191

Dong, N.T.; Novák, P.; Vejpravova, J.; Hong, N.V.; Lederer, J.; Munshi, T. (2017) Removal of copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods. J. Magn. Magn. Mater. 456, 451-460. https://doi.org/10.1016/j.jmmm.2017.11.064

Fihri, A.; Len, C.; Varma, R.S.; Solhy, A. (2017) Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coord. Chem. Rev. 347, 48-76. https://doi.org/10.1016/j.ccr.2017.06.009

Dick, T.A.; dos Santos, L.A. (2017) In situ synthesis and characterization of hydroxyapatite/natural rubber com­posites for biomedical applications. Mater. Sci. Eng. C 77, 874-882. https://doi.org/10.1016/j.msec.2017.03.301 PMid:28532104

Wu, S.-C.; Hsu, H.-C.; Hsu, S.-K.; Tseng, C.-P.; Ho, W.-F. (2017) Preparation and characterization of hydroxyapa­tite synthesized from oyster shell powders. Adv. Powder Technol. 28 [4], 1154-1158. https://doi.org/10.1016/j.apt.2017.02.001

De Angelis, G.; Medeghini, L.; Conte, A.M.; Mignardi, S. (2017) Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater. J. Clean. Prod. 164, 1497- 1506. https://doi.org/10.1016/j.jclepro.2017.07.085

Mobasherpour, I.; Salahi, E.; Pazouki, M. (2012) Comparative of the removal of Pb2+ , Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueous solutions: Adsorption isotherm study. Arab. J. Chem. 5 [4], 439-446. https://doi.org/10.1016/j.arabjc.2010.12.022

Ramakrishnan, P.; Nagarajan, S.; Thiruvenkatam, V.; Palanisami, T.; Naidu, R.; Mallavarapu, M.; Rajendran, S. (2016) Cation doped hydroxyapatite nanoparticles enhance strontium adsorption from aqueous system: A compara­tive study with and without calcination. Appl. Clay Sci. 134, 136-144. https://doi.org/10.1016/j.clay.2016.09.022

Xia, W.-Y.; Feng, Y.-S.; Jin, F.; Zhang, L.-M.; Du, Y.-J. (2017) Stabilization and solidification of a heavy metal contaminated site soil using a hydroxyapatite based binder. Constr. Build. Mater. 156, 199-207. https://doi.org/10.1016/j.conbuildmat.2017.08.149

Corami, A.; Mignardi, S.; Ferrini, V. (2008) Cadmium removal from single- and multi-metal (Cd+Pb+Zn+Cu) solu­tions by sorption on hydroxyapatite. J. Colloid Interface Sci. 317 [2], 402-408. https://doi.org/10.1016/j.jcis.2007.09.075 PMid:17949731

Guo, J.; Han, Y.; Mao, Y.; Wickramaratne, M. (2017) Influence of alginate fixation on the adsorption capac­ity of hydroxyapatite nanocrystals to Cu2+ ions. Colloid Surf. A-Physicochem. Eng. Asp. 529, 801-807. https://doi.org/10.1016/j.colsurfa.2017.06.075

Ning, Y.; Li, J.; Cai, W.; Shao, X. (2012) Simultaneous deter­mination of heavy metal ions in water using near-infrared spectroscopy with preconcentration by nano-hydroxyap­atite. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 96, 289-294. https://doi.org/10.1016/j.saa.2012.05.034 PMid:22698846

Guo, Y.J.; Wang, Y.Y.; Chen, T.; Wei, Y.T.; Chu, L.F.; Guo, Y.P. (2013) Hollow carbonated hydroxyapatite micro­spheres with mesoporous structure: hydrothermal fabrica­tion and drug delivery property. Mater. Sci. Eng., C. 33 [6], 3166-3172. https://doi.org/10.1016/j.msec.2013.03.040 PMid:23706197

Pramanik, S.; Agarwal, A.K.; Rai, K.N.; Garg, A. (2007) Development of high strength hydroxyapatite by solid-state-sintering process. Ceram. Int. 33 [3], 419-426. https://doi.org/10.1016/j.ceramint.2005.10.025

Farzadi, A.; Solati-Hashjin, M.; Bakhshi, F.; Aminian, A. (2011) Synthesis and characterization of hydroxyapatite/β- tricalcium phosphate nanocomposites using microwave irradiation. Ceram. Int. 37 [1], 65-71. https://doi.org/10.1016/j.ceramint.2010.08.021

Lak, A.; Mazloumi, M.; Mohajerani, M.S.; Zanganeh, S.; Shayegh, M.R.; Kajbafvala, A; Arami, H.; Sadrnezhaad, S.K. (2008) Rapid Formation of Mono-Dispersed Hydroxyapatite Nanorods with Narrow-Size Distribution via Microwave Irradiation. J. Am. Ceram. Soc. 91 [11], 3580- 3584. https://doi.org/10.1111/j.1551-2916.2008.02690.x

Liu, Z. (2015) Research on Yunnan phosphorus gypsum building putty powder of interior wall and evaluation of social benefits. Kunming University of Science and Technology,.(in Chinese)

Raval, N.P.; Shah, P.U.; Shah, N.K. (2016) Adsorptive removal of nickel(II) ions from aqueous environment: A review. Environ. Manage. 179, 1-20. https://doi.org/10.1016/j.jenvman.2016.04.045 PMid:27149285

Mehta, P.; Kaith, B.S. (2018) A Novel approach for the morphology controlled synthesis of rod-shaped nano-hydroxyapatite using semi-IPN and IPN as a template. Int. J. Biol. Macromol. 107, 312-321. https://doi.org/10.1016/j.ijbiomac.2017.08.164 PMid:28888548

Sivaperumal, V.R.; Mani, R.; Nachiappan, M.S.; Arumugam, K. (2017) Direct hydrothermal synthesis of hydroxyapatite/ alumina nanocomposite. Mater. Charact. 134, 416-421. https://doi.org/10.1016/j.matchar.2017.11.016

Thevannan, A.; Mungroo, R.; Niu, C.H. (2010) Biosorption of nickel with barley straw. Bioresour. Technol. 101 [6], 1776-1780. https://doi.org/10.1016/j.biortech.2009.10.035 PMid:19914062

Malkoc, E.; Nuhoglu, Y. (2005) Investigations of nickel(II) removal from aqueous solutions using tea factory waste. J. Hazard. Mater. 127 [1-3], 120-128. https://doi.org/10.1016/j.jhazmat.2005.06.030 PMid:16125314

Elouear, Z.; Amor, R.B.; Bouzid, J.; Boujelben, N. (2009) Use of Phosphate Rock for the Removal of Ni2+ from Aqueous Solutions: Kinetic and Thermodynamics Studies. J. Environ. Eng. 135 [4], 259-265. https://doi.org/10.1061/(ASCE)0733-9372(2009)135:4(259)

Published

2020-06-30

How to Cite

Chen, P., Chen, X., Wang, Y., & Wang, P. (2020). Preliminary study on the upcycle of non-structural construction and demolition waste for waste cleaning. Materiales De Construcción, 70(338), e220. https://doi.org/10.3989/mc.2020.13819

Issue

Section

Research Articles