Materiales de Construcción, Vol 70, No 339 (2020)

Behaviour of a high-performance self-compacting concrete (HPSCC) with ternary mixtures of nano- and microsilica in the presence of chlorides


https://doi.org/10.3989/mc.2020.10619

E. Reyes
Dpto. Ingeniería Civil, Construcción, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Spain
orcid https://orcid.org/0000-0002-1284-7335

J. Massana
Dpto. de Ingeniería Agroforestal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y Biosistemas. Universidad Politécnica de Madrid, Spain
orcid https://orcid.org/0000-0003-2960-0491

F. Alonso
Dpto. de Ingeniería Agroforestal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y Biosistemas. Universidad Politécnica de Madrid, Spain
orcid https://orcid.org/0000-0002-5095-385X

N. León
Dpto. Ingeniería Civil, Construcción, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Spain
orcid https://orcid.org/0000-0001-6427-798X

A. Moragues
Dpto. Ingeniería Civil, Construcción, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Spain
orcid https://orcid.org/0000-0001-7819-3066

Abstract


In this paper, the influence of additions of nanosilica (nSi) and microsilica (mSi) on the behav­iour of binary and ternary mixtures in chloride environments is studied. The main objective is to obtain high-performance self-compacting concrete (HPSCC) with a high durability which can meet specific demands in such aggressive environments. Ten blends were manufactured using Portland cement (CEM I 52.5 R) and additions of nSi and mSi in binary and ternary mixtures. The results of three tests frequently used to evaluate resistance to chloride penetration– electrical resistivity, migration and chloride diffusion –were studied and compared. Both binary and ternary mixtures presented significant improvements in chloride resistance, generally in proportion to the total content of the addition. In all the ternary mixtures, high resistivity is obtained, which indicates that such mixtures have a notably low chloride penetrability. Furthermore, these mixtures provided extremely low chloride diffusion coefficients even at small addition ratios.

Keywords


High-performance concrete; Active addition; Durability; Diffusion; Corrosion

Full Text:


HTML PDF XML

References


Siddique, R. (2013) Compressive strength, water absorp­tion, sorptivity, abrasion resistance and permeability of self-compacting concrete containing coal bottom ash. Construc. Build. Mat. 47, 1444–1450.

Łaźniewska-Piekarczyk, B. (2014) The methodology for assessing the impact of new generation superplasticiz­ers on air content in self-compacting concrete. Construc. Build. Mat. 53, 488–502.

Mohammed, M.K.; Dawson, A.R.; Thom, N.H. (2014) Carbonation of filler typed self-compacting concrete and its impact on the microstructure by utilization of 100% CO2 accelerating techniques. Construc. Build. Mat. 50, 508–516.

Druta, C.; Wang, L.; Lane, D.S. (2014) Tensile strength and paste-aggregate bonding characteristics of self-consol­idating concrete. Construc. Build. Mat. 55, 89–96.

Jalal, M.; Pouladkhan, A.; Harandi, O.F.; Jafari, D. (2015) Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self-compacting concrete. Construc. Build. Mat. 94, 90–104.

.

Güneyisi, E.; Gesoglu, M.; Al-Goody, A.; Ipek, S. (2015) Fresh and rheological behavior of nano-silica and fly ash blended self-compacting concrete. Construc. Build. Mat. 95, 29–44.

Hemalatha, T.; Ram Sundar, K.R.; Ramachandra Murthy, A.; Iyer, N. R. (2015) Influence of mixing protocol on fresh and hardened properties of self-compacting con­crete. Construc. Build. Mat. 98, 119–127.

Puentes, J.; Barluenga, G.; Palomar, I. (2015) Effect of silica-based nano and micro additions on SCC at early age and on hardened porosity and permeability. Construc. Build. Mat. 81, 154‑161.

Leung, H.Y.; Kim, J.; Nadeem, A.; Jaganathan, J.; Anwar, M.P. (2016) Sorptivity of self-compacting concrete contain­ing fly ash and silica fume. Construc. Build. Mat. 113, 369– 375.

Tian, J.; Wang, W.; Du, Y. (2016) Damage behaviors of self-compacting concrete and prediction model under cou­pling effect of salt freeze-thaw and flexural load. Construc. Build. Mat. 119, 241–250.

Asadollahi, S.; Saeedian, A.; Dehestani, M.; Zahedi, F. (2016) Improved compressive fracture models for self-con­solidating concrete (SCC). Construc. Build. Mat. 123, 473– 480.

Specification and Guidelines for Self-Compacting Concrete. (2005) European Federation for Specialist Construction Chemicals and Concrete Systems EFNARC.

Instrucción de Hormigón Estructural (EHE). (2010) Ministerio de Fomento, Secretaría General Técnica, Madrid.

Nepomuceno, M.C.S.; Oliveira, L.A.; Lopes, S.M.R. (2014) Methodology for mix design of self-compacting concrete using different mineral additions in binary blends of powders. Construc. Build. Mat. 26, 317–326.

Shi, C.; Wu, Z.; Lv, K.; Wu, L. (2015) A review on mixture design methods for self-compacting concrete. Construc. Build. Mat. 84, 387–398.

Ye, G.; Liu, X.; De Schutter, G.; Poppe, A.-M.;, Taerwe, L. (2007) Influence of limestone powder used as filler in SCC on hydration and microstructure of cement pastes. Cem. Concr. Compos. 29, 94–102.

Barluenga, G.; Palomar, I.; Puentes, J. (2015) Hardened properties and microstructure of SCC with mineral addi­tions. Construc. Build. Mat. 94, 728–736.

.

Jalal, M.; Pouladkhan, A.; Harandi, O.F.; Jafari, D. (2015) Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self-compacting concrete. Construc. Build. Mat. 94, 90–104.

Owsiak, Z.; Grzmil, W. (2015) The evaluation of the influ­ence of mineral additives on the durability of self-com­pacting concretes. KSCE J. Civil Engineer. 19, 1002–1008.

Ghafari, E.; Costa, H.; Júlio, E.; Portugal, A.; Durães, L. (2014) The effect of nanosilica addition on flowabil­ity, strength and transport properties of ultra-high per­formance concrete. Mater. Design. 59, 1‑9.

Li, Z.; Peng, J.; Ma, B. (1999) Investigation of chloride diffusion for high-performance concrete containing fly ash, microsilica and chemical admixtures. ACI Mater. J. 96, 391–396.

Björnstrom, J.; Martinelli, A.; Matic, A.; Börjesson, L.; Panas, I. (2004) Accelerating effects of colloidal nano-silica for beneficial calcium-silica-hydrate formation in cement. Chem. Phys. Lett. 392 [1–3], 242–248.

Jo, B-W.; Kim, C-H.; Tae, G-H.; Park. J-B. (2007) Characteristics of cement mortar with nano-SiO2 par­ticles. Construc. Build. Mat. 21, 1351‑1355.

Kawashima, S.; Hou, P.; Corr, D.J.; Shah, S.P. (2013) Modification of cement-based materials with nanopar­ticles. Cem. Concr. Compos. 36, 8‑15.

Rong, Z.; Sun, W.; Xiao, H.; Jiang, G. (2015) Effects of nano-SiO2 particles on the mechanical and microstruc­tural properties of ultra-high performance cementitious composites. Cem. Concr. Compos. 56, 25‑31.

Balapour, M.; Joshaghani, A.; Althoey, F. (2018) Nano- SiO2 contribution to mechanical, durability, fresh and microstructural characteristics of concrete: A review. Construc. Build. Mat. 181, 27–41.

Gesoglu, M.; Güneyisi, E.; Asaad, D.S.; Muhyaddin, G.F. (2016) Properties of low binder ultra-high performance cementitious composites: Comparison of nanosilica and microsilica. Construc. Build. Mat. 102, 706–713.

Bernal, J.; Reyes, E.; Massana, J.; León, N.; Sánchez, E. (2018) Fresh and mechanical behavior of a self-compact­ing concrete with additions of nano-silica, silica fume and ternary mixtures. Construc. Build. Mat. 160, 196–210.

Massana, J.; Reyes, E.; Bernal, J.; León, N.; Sánchez- Espinosa, E. (2018) Influence of nano- and micro-silica additions on the durability of a high-performance self-compacting concrete. Construc. Build. Mat. 165, 93–103.

Ryan, P.C.; O’Connor, A. (2016) Comparing the dura­bility of self-compacting concretes and conventionally vibrated concretes in chloride rich environments. Construc. Build. Mat. 120, 504–513.

UNE-EN 197-1:2011 Cement - Part 1: Composition, spec­ifications and conformity criteria for common cements. Asociación Española de Normalización y Certificación AENOR. www.aenor.es.

UNE 12620:2003+A1:2009 Aggregates for concrete. Asociación Española de Normalización y Certificación, AENOR. www.aenor.es.

UNE 83988-1:2008 Concrete durability. Test meth­ods. Determination of the electrical resistivity. Part 1: Direct test (reference method), Asociación Española de Normalización y Certificación AENOR. www. aenor.es.

ASTM C1202-18 (2018) Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International.

NT BUILD 492 (1999) Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments. Nordtest. ISSN 0283–7153.

CEN/TS 12390-11:2010 Testing hardened concrete - Part 11: Determination of the chloride resistance of con­crete, unidirectional diffusion. European Committee for Standardization.

UNE-EN 14629:2007 Products and systems for the pro­tection and repair of concrete structures - Test methods - Determination of chloride content in hardened concrete, Asociación Española de Normalización y Certificación. AENOR. http://www.aenor.es.

RILEM Publications. (2002). Analysis of total chloride content in concrete. Mater. Struct. 35, 583–585.

Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; et al. (1985) IUPAC (Recommendations 1984), Reporting physisorption data for gas/solid systems with special reference to the determi­nation of surface area and porosity. Pure Appl. Chem. 57, 603–619.

Polder, R.B. (2001) Test methods for on-site measurement of resistivity of concrete. RILEM TC-154 technical recom­mendation. Constr. Build. Mater. 15, 125–131.

Basheer, P.; Gilleece, P;. Long, A.; Mc Carter, W. (2002) Monitoring electrical resistance of concretes containing alternative cementitious materials to assess their resistance to chloride penetration. Cem. Concr. Compos. 24, 437–449.

Rajabipour, F.; Weiss, J.; Shane, J.D.; Mason, T.O.; Shah, S.P. (2005) Procedure to interpret electrical conductivity measurements in cover concrete during rewetting. J. Mater. Civ. Eng. 17, 586–594.

McPolin, D.; Basheer, P.A.M.; Long, A.E.; Grattan, K.T.V.; Sun, T. (2005) Obtaining progressive chloride profiles in cementitious materials. Constr. Build. Mater. 19, 666–673.

Andrade, C.;. D’Andrea, R.; Rebolledo, N. (2014) Chloride ion penetration in concrete: the reaction factor in the elec­trical resistivity model. Cem. Concr. Compos. 47, 41–46.

Romero Mendoza, H.R. (2011) Deterioro del hormigón sometido a ensayos acelerados de hielo-deshielo en presen­cia de cloruros, PhD dissertation, Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain.

Jalal, M.; Mansouri, E.; Sharifipour, M.; Pouladkhan, A.R. (2012) Mechanical, rheological, durability and microstructural properties of high performance self-com­pacting concrete containing SiO2 micro and nanoparticles. Mater. Design. 34, 389–400.

Li, L.G.; Zhu, J.; Huang, Z.H.; Kwan, A.K.H.; Li, L.J. (2017) Combined effects of micro-silica and nano-silica on durability of mortar. Construc. Build. Mat. 157, 337–347.

Zahedi, M.; Ramezanianpour, A.A.; Ramezanianpour, A.M. (2015) Evaluation of the mechanical properties and durability of cement mortars containing nanosilica and rice husk ash under chloride ion penetration. Construc. Build. Mat. 78, 354–361.

Alonso-Domínguez, D.; Álvarez-Serrano, I.; Reyes, E.; Moragues, A. (2017) New mortars fabricated by electro­static dry deposition of nano and microsilica additions: Enhanced properties. Construc. Build. Mat. 135, 186–193.

Olsson, N.; Lothenbach, B.; Baroghel-Bouny, V.; Nilsson, L-O. (2018) Unsaturated ion diffusion in cementitious materials – The effect of slag and silica fume. Construc. Build. Mat. 108, 31–37.




Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es