Materiales de Construcción, Vol 70, No 339 (2020)

Alkali activation of recycled ceramic aggregates from construction and demolition wastes


https://doi.org/10.3989/mc.2020.13619

N. Gaibor
CTAC, Department of Civil Engineering, Azurém Campus, University of Minho, Portugal
orcid https://orcid.org/0000-0002-0003-8901

J. Coelho
School of Engineering of the University of Minho, Portugal
orcid https://orcid.org/0000-0002-9959-4907

D. Leitão
CTAC, Department of Civil Engineering, Azurém Campus, University of Minho, Portugal
orcid https://orcid.org/0000-0003-0841-7954

T. Miranda
ISISE, Institute for Science and Innovation for Bio-Sustainability (IB-S), Department of Civil Engineering, University of Minho, Portugal
orcid https://orcid.org/0000-0003-4054-6860

P. Tavares
CQ-VR, Centro de Química - Vila Real, Department of Chemistry, University of Trás-os-Montes e Alto Douro, Portugal

N. Cristelo
CQ-VR, Centro de Química - Vila Real, Department of Engineering, University of Trás-os-Montes e Alto Douro, Portugal
orcid https://orcid.org/0000-0002-3600-1094

Abstract


Environmental concerns are becoming increasingly more significant worldwide, thus creating the urgent need for new sustainable alternatives in the industrial sector. The present study assesses the fundamental properties of ceramic residue (CR) originated by demolition operations, specifically, the floor and wall tiles and sanitaryware furniture, for further incorporation in the construction sector, namely in alkali-activated binders, mixed with other better-known precursors - fly ash (FA) and ladle furnace slag (LFS). Different CR/FA and CR/LFS weight ratios were considered and analyzed by mechanical behavior and microstructural analysis, which included uniaxial compression strength (UCS) tests, Scanning Electron Microscopy (SEM), X-ray Energy Dispersive Analyser (EDX), X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). Results obtained showed that the combination of CR and FA or LFS, activated with sodium silicate, produced UCS values higher than 20 MPa and 59 MPa, respectively, after 90 days curing.

Keywords


Ceramic; Alkali-activated cement; Waste treatment; Mechanical properties; Physical properties

Full Text:


HTML PDF XML

References


Hwang, C.-L.; Damtie Yehualaw, M.; Vo, D.-H.; Huynh, T.-P. (2019) Development of high-strength alkali-activated pastes containing high volumes of waste brick and ceramic powders. Constr. Build. Mater. 218, 519–529.

Eurostat. (2018) Waste statistics - Statistics Explained.

Cerame-Unie; Ceramic industry | Cerame-Unie - The European Ceramic Industry Association.

Khan, M.S.; Sohail, M.; Khattak, N.S.; Sayed, M. (2016) Industrial ceramic waste in Pakistan, valuable material for possible applications. J. Clean. Prod. 139, 1520–1528.

Chen, H.-J.; Yen, T.; Chen, K.-H. (2003) Use of building rubbles as recycled aggregates. Cem. Concr. Res. 33 [1], 125–132.

Jindal, A.; Ransinchung, R.N.G.D. (2018) Behavioural study of pavement quality concrete containing construction, industrial and agricultural wastes. Int. J. Pavement Res. Technol. 11 [5], 488–501.

Cristelo, N.; Fernández-Jiménez, A.; Miranda, T.; Palomo, Á. (2017) Sustainable alkali activated materials: Precursor and activator derived from industrial wastes. J. Clean. Prod. 162, 1200–1209.

Gavali, H.R.; Bras, A.; Faria, P.; Ralegaonkar, R. V. (2019) Development of sustainable alkali-activated bricks using industrial wastes. Constr. Build. Mater. 215, 180–191.

Amin, S.K.; El-Sherbiny, S.A.; El-Magd, A.A.M.A.; Belal, A.; Abadir, M.F. (2017) Fabrication of geopolymer bricks using ceramic dust waste. Constr. Build. Mater. 157, 610–620.

Murillo, L.M.; Delvasto, S.; Gordillo, M. (2017) A study of a hybrid binder based on alkali-activated ceramic tile wastes and portland cement. In Sustainable and Nonconventional Construction Materials using Inorganic Bonded Fiber Composites. Elsevier Inc., pp. 291–311.

Villaquirán-Caicedo, M.A.; de Gutiérrez, R.M. (2018) Synthesis of ceramic materials from ecofriendly geopolymer precursors. Mater. Lett. 230, 300–304.

Azevedo, A.R.G.; Vieira, C.M.F.; Ferreira, W.M.; Faria, K.C.P.; Pedroti, L.G.; Mendes, B.C. (2020) Potential use of ceramic waste as precursor in the geopolymerization reaction for the production of ceramic roof tiles. J. Build. Eng. 29, 101156.

Sun, Z.; Cui, H.; An, H.; Tao, D.; Xu, Y.; Zhai, J.; Li, Q. (2013) Synthesis and thermal behavior of geopolymer-type material from waste ceramic. Constr. Build. Mater. 49, 281–287.

Huseien, G.F.; Sam, A.R.M.; Shah, K.W.; Asaad, M.A.; Tahir, M.M.; Mirza, J. (2019) Properties of ceramic tile waste based alkali-activated mortars incorporating GBFS and fly ash. Constr. Build. Mater. 214, 355–368.

Reig, L.; Sanz, M.A.; Borrachero, M.V.; Monzó, J.; Soriano, L.; Payá, J. (2017) Compressive strength and microstructure of alkali-activated mortars with high ceramic waste content. Ceram. Int. 43 [16], 13622–13634.

Rakhimova, N.R.; Rakhimov, R.Z. (2015) Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste. Mater. Des. 85, 324–331.

Huseien, G.F.; Sam, A.R.M.; Shah, K.W.; Mirza, J.; Tahir, M.M. (2019) Evaluation of alkali-activated mortars containing high volume waste ceramic powder and fly ash replacing GBFS. Constr. Build. Mater. 210, 78–92.

Huseien, G.F.; Sam, A.R.M.; Mirza, J.; Tahir, M.M.; Asaad, M.A.; Ismail, M.; Shah, K.W. (2018) Waste ceramic powder incorporated alkali activated mortars exposed to elevated Temperatures: Performance evaluation. Constr. Build. Mater. 187, 307–317.

Cristelo, N.; Tavares, P.; Lucas, E.; Miranda, T.; Oliveira, D. (2016) Quantitative and qualitative assessment of the amorphous phase of a Class F fly ash dissolved during alkali activation reactions – Effect of mechanical activation, solution concentration and temperature. Compos. Part B Eng. 103, 1–14.

CCP14 Homepage - Tutorials and Examples - Powder Cell for Windows, Structure Visualisation/Manipulation, Powder Pattern Calculation and Profile Fitting by Werner Kraus and Gert Nolze.

Le Bail, A. (1995) Modelling the silica glass structure by the Rietveld method. J. Non. Cryst. Solids. 183, 39–42.

Cristelo, N.; Coelho, J.; Miranda, T.; Palomo, Á.; Fernández-Jiménez, A. (2019) Alkali activated composites – An innovative concept using iron and steel slag as both precursor and aggregate. Cem. Concr. Compos. 103, 11–21.

Ruiz-Santaquiteria, C.; Fernández-Jiménez, A.; Palomo, Á. (2016) Alternative prime materials for developing new cements: Alkaline activation of alkali aluminosilicate glasses. Ceram. Int. 42 [8], 9333–9340.

Fernández-Jiménez, A.; Monzó, M.; Vicent, M.; Barba, A.; Palomo, Á. (2008) Alkaline activation of metakaolin-fly ash mixtures: Obtain of Zeoceramics and Zeocements. Microporous Mesoporous Mater. 108 [1–3], 41–49.

Garcia-Lodeiro, I.; Fernandez-Jimenez, A.; Palomo, Á. (2013) Hydration kinetics in hybrid binders: Early reaction stages. Cem. Concr. Compos. 39, 82–92.

Puertas, F.; Palacios, M.; Manzano, H.; Dolado, J.S.; Rico, A.; Rodríguez, J. (2011) A model for the C-A-S-H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 31 [12], 2043–2056.

Schneider, H.; Schreuer, J.; Hildmann, B. (2008) Structure and properties of mullite-A review. J. Eur. Ceram. Soc. 28 [2], 329–344.

Rivera, J.F.; Cristelo, N.; Fernández-Jiménez, A.; Mejía de Gutiérrez, R. (2019) Synthesis of alkaline cements based on fly ash and metallurgic slag: Optimisation of the SiO2 /Al2O3 and Na2O/SiO2 molar ratios using the response surface methodology. Constr. Build. Mater. 213, 424–433.




Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es