Influence of the addition of carbon fibers on the properties of hydraulic lime mortars: comparison with glass and basalt fibers




Mortar, Hydraulic lime, Fibre reinforcement, Mechanical properties, Characterization


In recent years, the use of hydraulic lime in conservation and restoration of historic buildings has increased due to the pathological processes involved in the use of Portland cement. This investigation deter­mines the properties of hydraulic lime mortars with added carbon fibers for their possible use in restoration of architectural heritage. The results obtained are compared with mortars to which glass and basalt fibers have been added. The results show that the fibers affect significantly the behaviour of the mortar. Although the fibers have a negative impact in the workability and increase the air void content, they improve significantly the mechanical strengths. Although no relevant differences have been found in the pre-cracking behaviour, it has been proven that the fibers avoid a fragile behaviour of the mortar, showing a better post-cracking behaviour. Mortars with carbon fibers are the ones that show the best performance, increasing the toughness up to 12080% over the reference mortars.


Download data is not yet available.


Moropoulou, A.; Bakolas, A.; Moundoulas, P.; Aggelakopoulou, E.; Anagnostopoulou, S. (2013) Optimization of compatible restoration mortars for the earthquake protection of Hagia Sophia. J. Cult. Herit. 14 [3], e147–e152.

Bianco, N.; Calia, A.; Denotarpietro, G.; Negro, P. (2013) Laboratory assessment of the performance of new hydrau­lic mortars for restoration. Procedia Chem. 8, 20–27.

Arizzi, A.; Martínez- Huerga, G.; Sebastian-Pardo, E.; Cultrone, G. (2015) Mineralogical, textural and physical-mechanical study of hydraulic lime mortars cured under different moisture conditions. Mater. Construcc. 65 [318], e053.

Gullota, D.; Goidanich, S.; Tedeschi, C.; Nijland, T.G.; Toniolo, L. (2013) Commercial NHL-containing mortars for the preservation of historical architecture. Part 1: Compositional and mechanical characterisation. Constr. Build. Mat. 38, 31–42.

Kozlovcev, P.; Přikryl, R. (2015) Devonian micritic lime­stones used in the historic production of Prague hydraulic lime (‘pasta di Praga’): characterization of the raw material and experimental laboratory burning. Mater. Construcc. 65 [319], e060.

Arizzi, A.; Viles, H.; Cultrone, G. (2012) Experimental test­ing of the durability of lime-based mortars used for render­ing historic buildings. Constr. Build. Mat. 28 [1], 807–818.

Tassew, S.T.; Lubell, A.S. (2014) Mechanical proper­ties of glass fiber reinforced ceramic concrete. Constr. Build. Mat. 51, 215–224.

Kizilkanat, A.B.; Kabay, N.; Akyüncü, V.; Chowdhury, S.; Akça, A.H. (2015) Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study. Constr. Build. Mat. 100, 218–224.

Fenu, L.; Forni, D.; Cadoni, E. (2016) Dynamic behav­iour of cement mortars reinforced with glass and basalt fibres. Comp. Part B: Eng. 92, 142–150.

Lipatov, Y.V.; Gutnikov, S.I.; Manylov, M.S.; Zhukovskaya, E.S.; Lazoryak, B.I. (2015) High alkali-resistant basalt fiber for reinforcing concrete. Mater. Des. 73, 60–66.

Kabay, N. (2014) Abrasion resistance and fracture energy of concretes with basalt fiber. Constr. Build. Mat. 50, 95–101.

Graham, R.K.; Huang, B.; Shu, X.; Burdette, E.G. (2013) Laboratory evaluation of tensile strength and energy absorb­ing properties of cement mortar reinforced with micro-and meso-sized carbon fibers. Constr. Build. Mat. 44, 751–756.

Shu, X.; Graham, R.K.; Huang, B.; Burdette, E.G. (2015) Hybrid effects of carbon fibers on mechanical properties of Portland cement mortar. Mater. Des. 65, 1222–1228.

Nguyen, H.; Carvelli, V.; Fujii, T.; Okubo, K. (2016) Cement mortar reinforced with reclaimed carbon fibres, CFRP waste or prepreg carbon waste. Constr. Build. Mat. 126, 321–331.

Lucolano, F.; Liguori, B.; Colella, C. (2013) Fibre-reinforced lime-based mortars: A possible resource for ancient masonry restoration. Constr. Build. Mat. 38, 785–789.

Santarelli, M.L.; Sbardella, F.; Zuena, M.; Tirillò, J.; Sarasini, F. (2014) Basalt fiber reinforced natural hydraulic lime mortars: A potential bio-based material for restora­tion. Mater. Des. 63, 398-406.

Arslan, M.E. (2016) Effects of basalt and glass chopped fibers addition on fracture energy and mechanical proper­ties of ordinary concrete: CMOD measurement. Constr. Build. Mat. 114, 383–391.

EN 459-1 (2015) Building lime - Part 1: Definitions, speci­fications and conformity criteria. European Committee for Standardization. Retrieved from https://standards. 2d7dcab1b6ac/en-459-1-2015.

EN 196-1 (2016). Methods of testing cement - Part 1: Determination of strength. European Committee for Standardization. Retrieved from a383d9bddd6c/en-196-1-2016.

Gao, J.; Wang, Z.; Zhang, T.; Zhou, L. (2017) Dispersion of carbon fibers in cement-based composites with differ­ent mixing methods. Constr. Build. Mat. 134, 220–227.

EN 459-2 (2010) Building lime - Part 2: Test Methods. European Committee for Standardization. Retrieved from

EN 1015-3/A2 (2006) Methods of test for mortar for masonry - Part 3: Determination of consistence of fresh mortar (by flow table). Retrieved from standards/cen/fb7a5bb4-d8e4-4c91-a7f8-a5cc646ce3e9/ en-1015-3-1999-a2-2006.

EN 1015-6/A1 (2006) Methods of test for mortar for masonry - Part 6: Determination of bulk density of fresh mortar. Retrieved from standards/cen/529d9f7a-4b23-4747-8e12-a3185038cb1e/ en-1015-6-1998-a1-2006.

EN 1015-10/A1 (2006) Methods of test for mortar for masonry - Part 10: Determination of dry bulk density of hardened mortar. European Committee for Standardization. Retrieved from­dards/cen/865ded6d-f5e0-43ba-9ba9-69da5400168a/ en-1015-10-1999-a1-2006.

EN 1015-7 (1998) Methods of test for mortar for masonry - Part 7: determination of air content of fresh mortar. Retrieved from­dards/cen/3c66138f-1eb7-41a2-99c6-92ed26a7bdd1/ en-1015-7-1998.

EN 1015-11/A1 (2006) Methods of test for mortar for masonry - Part 11: Determination of flexural and compres­sive strength of hardened mortar. European Committee for Standardization. Retrieved from https://standards. be39d56242d3/en-1015-11-1999-a1-2006.

ASTM C1609/C1609M-12 (2012) Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading), ASTM International, West Conshohocken, PA. 10.1520/C1609_C1609M-12.

Hou, L.J.; Xu, S.L.; Zhang, X.F. (2012) Toughness evaluation of ultra-high toughness cementitious composite specimens with different depths. Mag. Concr. Res. 64 [12], 1079–1088.

Li, Y.; Li, Y.; Shi, T.; Li, J. (2015) Experimental study on mechanical properties and fracture toughness of magne­sium phosphate cement. Constr. Build. Mat. 96, 346–352.

UNE 83508 (2004) Concrete with fibers. Determination of the index of tenacity in compression. Spanish Association for Standardization and Certification. Retrieved from buscador-de-normas/une/?c=N0032568.

García-Cuadrado, J.; Rodríguez, A.; Cuesta, I. I.; Calderón, V.; Gutiérrez-González, S. (2017) Study and analysis by means of surface response to fracture behavior in lime-cement mortars fabricated with steelmaking slags. Constr. Build. Mat. 138, 204–213.

Jiang, C.; Fan, K.; Wu, F.; Chen, D. (2014) Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Mater. Des. 58, 187–193.

Khushnood, R.A.; Muhammad, S.; Ahmad, S.; Tulliani, J.M.; Qamar, M.U.; Ullah, Q. Maqsom, A. (2018) Theoretical and experimental analysis of multifunctional high performance cement mortar matrices reinforced with varying lengths of carbon fibers. Mater. Construcc. 68 [332], e172.

Pereira-de-Oliveira, L.A.; Castro-Gomes, J.P.; Nepomuceno, M.C. (2012) Effect of acrylic fibres geom­etry on physical, mechanical and durability properties of cement mortars. Constr. Build. Mat. 27 [1], 189–196.

Bustos-García, A.; Moreno-Fernández, E.; Zavalis, R.; Valivonis, J. (2019) Diagonal compression tests on masonry wallets coated with mortars reinforced with glass fibers. Mater. Struct. 52 [3], 60.

Asprone, D.; Cadoni, E.; Lucolano, F.; Prota, A. (2014) Analysis of the strain-rate behavior of a basalt fiber rein­forced natural hydraulic mortar. Cem. Concr. Compos. 53, 52–58.

Izaguirre, A.; Lanas, J.; Alvarez, J.I. (2011) Effect of a polypropylene fibre on the behaviour of aerial lime-based mortars. Constr. Build. Mat. 25 [2], 992–1000.

Serrano, R.; Cobo, A.; Prieto, M.I.; de las Nieves González, M. (2016) Analysis of fire resistance of con­crete with polypropylene or steel fibers. Constr. Build. Mat. 122, 302–309.



How to Cite

Bustos, A., Moreno, E., González, F., & Cobo, A. (2020). Influence of the addition of carbon fibers on the properties of hydraulic lime mortars: comparison with glass and basalt fibers. Materiales De Construcción, 70(340), e229.



Research Articles