Eco-efficient alkaline activated binders for manufacturing blocks and pedestrian pavers with low carbon footprint: Mechanical properties and LCA assessment

Authors

DOI:

https://doi.org/10.3989/mc.2020.17419

Keywords:

Fly ash, Rice husk ash, Alkaline-activated cement, Life cycle assessment, Precast elements

Abstract


This study proposes using two types of binders based on fly ash (FA) as primary raw material and a calcium source such as ground granulated blast furnace slag (GBFS) or Portland cement (OPC) for the production of eco-efficient pre-fabricated materials. These binders are denoted FA/GBFS (70/30) and FA/OPC (80/20). A mix of commercial sodium silicate and sodium hydroxide was used as a traditional activator (SN), and the mix of rice husk ash (RHA) and NaOH as an alternative activator (RN). The results show the possibility of obtaining a binary cement (FA/GBFS-RN) with compressive strength up to 38 MPa after curing for 28 days and 65 MPa after curing for 360 days. The hybrid binder (FA/OPC-RN) reported 30 MPa and 61 MPa at the same age of curing. Additionally, FA/GBFS-RN reports reductions in the environmental and health impacts of up to 75% compared to systems made with sodium silicate and sodium hydroxide. Based on the results, FA/GBFS-RN paste was selected as the optimal material for producing masonry blocks and pedestrian pavers, which met the Colombian standards.

Downloads

Download data is not yet available.

References

Guillaume, H.; Ouellet-Plamondonb, C. (2016) Recent update on the environmental impact of geopolymers. RILEM Technical Letters 1, 17 - 23. https://doi.org/10.21809/rilemtechlett.2016.6

Woszuk, A.; Bandura, L.; Franus, W. (2019) Fly ash as low cost and environmentally friendly filler and its effect on the properties of mix asphalt. J. Clean. Prod. 235, 493-502. https://doi.org/10.1016/j.jclepro.2019.06.353

Yao, Z.T.; Ji, X.S.; Sarker, P.K.; Tang, J.H.; Ge, L.Q.; Xia, M.S.; Xi, Y.Q. (2015) A comprehensive review on the applications of coal fly ash. Earth-Sci Rev. 141, 105-121. https://doi.org/10.1016/j.earscirev.2014.11.016

Gollakota, A.R.K.; Volli, V.; Shu, C-M. (2019) Progressive utilisation prospects of coal fly ash: A review. Sci. Total. Environ. 672, 951-989. https://doi.org/10.1016/j.scitotenv.2019.03.337

PMid:30981170

Palomo, A.; Fernández-Jiménez, A. (2008) Nuevos cementos de bajo impacto ambiental. Caat Valencia. 114, 22-26.

Fernández-Jiménez A.; Palomo, Á. (2011) Propiedades y aplicaciones de los cementos alcalinos. Rev. Ing. Constr. 24, 213-232. https://doi.org/10.4067/S0718-50732009000300001

Kishan, L.J.; Radhakrishna (2013) Comparative study of cement concrete and geopolymer masonry blocks. IJRET: Int. J. Res. Eng. Technol, 361-365. https://doi.org/10.15623/ijret.2013.0213068

Arıöz, Ö.; Kilinc, K.; Tuncan, M.; Tuncan, A.; Kavas, T. (2010) Physical, mechanical and micro-structural properties of F type fly-ash based geopolymeric bricks produced by pressure forming process. Adv. Sci. Tech. 69, 69-74. https://doi.org/10.4028/www.scientific.net/AST.69.69

Villaquirán-Caicedo, M. (2019) Studying different silica sources for preparation of alternative waterglass used in preparation of binary geopolymer binders from metakaolin/boiler slag. Constr. Buil. Mater. 227, 116621. https://doi.org/10.1016/j.conbuildmat.2019.08.002

Torres-Carrasco, M.; Puertas, F. (2015) Waste glass in the geopolymer preparation. Mechanical and microstructural characterization. J. Clean. Prod. 90, 397-408. https://doi.org/10.1016/j.jclepro.2014.11.074

Font, A.; Soriano, L.; Reig, L.; Tashima, M.; Borrachero, M.; Monzó, J.; Payá, J. (2018) Use of residual diatomaceous earth as a silica source in geopolymer production. Mater. Lett. 223, 10-13. https://doi.org/10.1016/j.matlet.2018.04.010

Luukkonen, T.; Abdollahnejad, Z.; Yliniemi, J.; Kinnunen, P.; Illikainen, M. (2018) Comparison of alkali and silica sources in one-part alkali-activated blast furnace slag mortar. J. Clean. Prod. 187, 171-179. https://doi.org/10.1016/j.jclepro.2018.03.202

Tchakouté, H.K.; Rüsche, C.H.; Kong, S.; Ranjbar, N. (2016) Synthesis of sodium waterglass from white rice husk ash as an activator to produce metakaolin-based geopolymer cements. J. Build. Eng. 6, 252-261. https://doi.org/10.1016/j.jobe.2016.04.007

Mellado, A.; Catalán, C.; Bouzón, N; Borrachero, M.V.; Monzó, J.M.; Payá, J. (2014). Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv. 4, 23846-23852. https://doi.org/10.1039/C4RA03375B

Tchakouté, H.K.; Rüsche, C.H.; Kong, S.; Kamseu, E.; Leonelli, C. (2016) Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activator: A comparative study. Constr. Build. Mater. 114, 276-289. https://doi.org/10.1016/j.conbuildmat.2016.03.184

Tchakouté, H.K.; Rüsche, C.H.; Hinsch, M.; Djobo, J.N.Y.; Kamseu, E.; Leonelli, C. (2017) Utilization of sodium waterglass from sugar cane bagasse ash as a new alternative hardener for producing metakaolin-based geopolymer cement. Chem. Erde. 77, 257-266. https://doi.org/10.1016/j.chemer.2017.04.003

Passuello, A.; Rodríguez, E.D.; Hirt, E.; Longhi, M.; Bernal, S.A.; Provis, J.L.; Kirchheim, A.P. (2017) Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators. J. Clean. Prod. 166, 680-689. https://doi.org/10.1016/j.jclepro.2017.08.007

Kamseu, E.; Beleuk à Moungram, L.M.; Cannio, M.; Billong, N.; Chaysuwan, D.; Chinje Melo, U.; Leonelli, C. (2017) Substitution of sodium silicate with rice husk ash- NaOH solution in metakaolin based geopolymer cement concerning reduction in global warming. J. Clean. Prod. 142, 3050-3060. https://doi.org/10.1016/j.jclepro.2016.10.164

Mehta P.K. (1973) Siliceous ashes and hydraulic cements prepared there-from. Belgium; Patent 802909.

Habert, G.; d'Espinose de Lacaillerie, J.B.; Roussel, N. (2011) An environmental evaluation of geopolymer based concrete production: reviewing current research trends. J. Clean. Prod. 19, 1229-1238. https://doi.org/10.1016/j.jclepro.2011.03.012

Gao, X.; Yu, Q.L.; Brouwers, H.J.H. (2017) Apply 29Si, 27Al MAS NMR and selective dissolution in identifying the reaction degree of alkali-activated slag-fly ash composites. Ceram. Int. 43, 12408 -12419. https://doi.org/10.1016/j.ceramint.2017.06.108

Wang, S-D.; Scrivener, K.L. (2003) 29Si and 27Al NMR study of alkali-activated slag. Cem. Concr. Res. 33, 769-774. https://doi.org/10.1016/S0008-8846(02)01044-X

Mejía, J.M.; Mejía de Gutiérrez, R.; Puertas, F. (2012) Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems. Mater. Construc. 63, 361-375.

García-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A. (2013) Variation in hybrid cements over time. Alkaline activation of fly ash-portland cement blends. Cem. Concr. Res. 52, 111-122. https://doi.org/10.1016/j.cemconres.2013.03.022

Geraldo, R.H.; Fernandes, L.F.R.; Camarini, G. (2017) Water treatment sludge and rice husk ash to sustainable geopolymer production. J. Clean. Prod. 149, 146-155. https://doi.org/10.1016/j.jclepro.2017.02.076

Bouzón, N.; Payá, J.; Borrachero, M.V.; Soriano, L.; Tashima, M.M.; Monzó, J. (2014) Refluxed rice husk ash/ NaOH suspension for preparing alkali activated binders. Mater. Lett. 115, 72-74. https://doi.org/10.1016/j.matlet.2013.10.001

Bernal, S.A.; Rodríguez, E.D.; Mejía de Gutiérrez, R.; Provis, J. L. (2015) Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash-based activators. Mater. Construcc. 65 [318], e049. https://doi.org/10.3989/mc.2015.03114

Petrillo, A.; Cioffi, R.; Ferone, C.; Colangelo, F.; Borrelli, C. (2016) Eco-sustainable geopolymer concrete blocks production process. Agric. Agric. Sci. Procedia. 8, 408-418. https://doi.org/10.1016/j.aaspro.2016.02.037

Tempest, B.; Sanusi, O.; Gergely, J.; Ogunro, V.; Weggel, D. (2009) Compressive strength and embodied energy optimization of fly ash based geopolymer concrete. World of Coal Ash Conference in Lexington, KY USA 1-17.

Villaquirán-Caicedo, M.A.; Mejía de Gutiérrez, R. (2018) Synthesis of ceramic materials from ecofriendly geopolymer precursors. Mater. Lett. 230, 300-304. https://doi.org/10.1016/j.matlet.2018.07.128

Robayo-Salazar, R.; Mejía-Arcilla, J.; Mejía de Gutierrez, R.; Martínez, E. (2018) Life cycle assessment (LCA) of an alkali-activated binary concrete based on natural volcanic pozzolan: A comparative analysis to OPC concrete. Constr. Build. Mater. 176, 103-111. https://doi.org/10.1016/j.conbuildmat.2018.05.017

Robayo-Salazar, R.A.; Mejía-Arcila, J.M.; Mejía de Gutierrez, R. (2017) Eco-efficient alkali-activated cement based on red clay brick wastes suitable for the manufacturing of building materials. J. Clean Prod. 166, 242-252. https://doi.org/10.1016/j.jclepro.2017.07.243

Palomo, A.; Fernández-Jiménez, A. (2011) Alkaline Activation, Procedure for Transforming Fly Ash into New Materials. Part 1: Applications. Proceedings of World of Coal Ash. 1-14.

Suksiripattanapong, C.; Horpibulsuk, S.; Chanprasert, P.; Sukmak, P.; Arulrajah, A. (2015) Compressive strength development in fly ash geopolymer masonry units manufactured from water treatment sludge. Constr. Build. Mater. 82, 20-30. https://doi.org/10.1016/j.conbuildmat.2015.02.040

Kumar, A.; Kumar, S. (2013) Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization. Constr. Build. Mater. 38, 865-871. https://doi.org/10.1016/j.conbuildmat.2012.09.013

Published

2020-11-04

How to Cite

Mejía-Arcila, J., Valencia-Saavedra, W., & Mejía de Gutiérrez, R. (2020). Eco-efficient alkaline activated binders for manufacturing blocks and pedestrian pavers with low carbon footprint: Mechanical properties and LCA assessment. Materiales De Construcción, 70(340), e232. https://doi.org/10.3989/mc.2020.17419

Issue

Section

Research Articles