Species effect on decay resistance of wood exposed to exterior conditions above the ground in Spain





Wood, Durability, Weathering, Permeability, Detection of cracks


The objective of this study is to evaluate the effect of the species on the biological resistance of wood against decay and to propose corrective values of the critical dose. To evaluate the species effect, the evolution of the number of days per year with moisture content exceeding 18% was assessed in flat sawn 20x100x750 mm3 test samples of Laricio, Scots and Radiata pines and also of Norway spruce, Eucalypt (globulus) and sweet chestnut during the years 2016, 2017 and 2018, exposed at seven locations in Spain with the most representative Spanish climates. A value of 1.0 is proposed for the four conifers, 2.51 for the Eucalypt and 1.84 for the Sweet chestnut. As regards the species effect it was not possible to separate that corresponding to the different wetting/releasing ability of each species and that of their crack susceptibility, both aspects having to be evaluated together as “species factor”.


Download data is not yet available.


Brischke, C.; Jones, D. (2016) Performance of bio-based building products - Recent activities within COST Action FP 1303; Holztechnologie. 57 [2], 47-54.

Brischke, C.; Rapp, A.O.; Bayerbach, R. (2007) Decay influencing factors: a basis for service life prediction of wood and wood-based products. Wood. Mat. Sci. Eng. 1 [3-4], 91-107.

Meyer-Veltrup, L.; Brischke, C. (2017) Design and performance prediction of timber structures based on a factorization approach. IRG/WP 17-20603. IRG; Stockholm.

Thelandersson, S.; Isaksson, T.; Frühwald, E.; Toratti, T.; Viitanen, H.; Grüll, G.; Jermer, J.; Suttie, E. (2011) WoodExter-Service life and performance of exterior wood above ground. Report TVBK‐3060. ISBN 978‐91‐979543‐ 0‐3. Lund University; Sweden.

Isaksson, T.; Thelandersson, S. (2013) Experimental investigation on the effect of detail design on wood moisture content in outdoor above ground applications. Build. Environ. 59, 239-249.

Isaksson, T.; Thelandersson, S.; Jermer, J.; Brischke, C. (2015) Service life of wood in outdoor above ground applications: Engineering design guideline. Background document Rapport TVBK-3067. Lund University; Division of Structural Engineering; Lund; Sweden. ISBN 978-87993-02-2.

EN 252:2015 Field test method for determining the relative protective effectiveness of a wood preservative in ground contact. European Committee for Standardization.

ISO 15686-1 (2011) Buildings and constructed assets - Service life planning - Part 1: General principles and framework. International Organization for Standardization; Genève.

Marteinsson, B. (2003) Durability and the factor method of ISO 15686-1. Build. Res. Inf. 31 [6], 416-426.

Fernandez-Golfin, J.I.; Larrumbide, E.; Ruano, A.; Galvan, J.; Conde, M. (2016). Wood decay hazard in Spain using the Scheffer index: proposal for an improvement. Eur. J. Wood Prod. 74, 591-599.

Isaksson, T.; Brischke, C.; Thelandersson, S. (2013) Development of decay performance models for outdoor timber structures. Mater. Struct. 46, 1209-1225.

Brischke, C.; Hesse, C.; Meyer, L.; Bardage, S.; Jermer, J.; Isaksson, T. (2014). Moisture dynamics of wood- An approach to implement the wetting ability of wood into a resistance classification concept. Proceedings IRG annual meeting 2014. IRG/WP 14-20557. IRG; Stockholm.

Meyer-Veltrup, L.; Brischke, C.; Goritzka, C.; Hundhausen, U. (2016). Formation of cracks in wooden elements - design; moisture and durability aspects. COST FP 1303 4th Conference ‘Designing with bio-based building materials - challenges and opportunities’ 24-25 February 2016; Madrid; Spain.

Osawa, T.; Maeda, K.; Tsunetsugu, Y.; Shida, S. (2019). Influence of surface checks on wood moisture content during wetting and re‑drying. Eur. J. Wood Prod. 77, 681-689.

Brischke, C.; Soetbeer, A.; Meyer-Veltrup, L. (2017). The minimum moisture threshold for wood decay by basidiomycetes revisited. A review and modified pile experiments with Norway spruce and European beech decayed by Coniophora puteana and Trametes versicolor. Holzforschung. 71 [11], 893-903.

Rapp, A.O.; Peek, R.D.; Sailer, M. (2000). Modelling the moisture induced risk of decay for treated and untreated wood above ground. Holzforschung. 54 [2], 111-118.

Råberg, U.; Edlund, M.L.; Terziev, N.; Land, C.J. (2005) Testing and evaluation of natural durability of wood in above ground conditions in European overview. J. Wood Sci. 51, 429-440.

Meyer, L.; Brischke, C. (2015). Fungal decay at different moisture levels of selected European-grown wood species. Int. Biodeter. Biodegr. 103, 23-29.

Morris, P.; Winandy, J.E. (2002). Limiting Conditions for Decay in Wood Systems. International Research Group on Wood Protection; Stockholm; IRG/WP 02-10421. IRG; Stockholm.

Zak, J.C.; Wildman, H.G. (2004). 14 - Fungi in stressful environments. In Biodiversity of fungi. Burlington: Academic Press; 303-315.

Viitanen, H.A. (1997) Modelling the time factor in the development of brown rot decay in Pine and Spruce sapwood-the effect of critical humidity and temperature conditions. Holzforschung. 51, 99-106.

Kutnik, M.; Suttie, E.; Brischke, C. (2014) European standards on durability and performance of wood and wood-based products - Trends and challenges. Wood Mater. Sci. Eng. 9 [3], 122-133.

Brischke, C.; Humar, M.; Meyer, L.; Bardage, S.; Van den Bulcke, J. (2014). Cost Action FP 1303. Cooperative Performance Test. Instructions for participants.

Fernandez-Golfin, J.I.; Conde, M.; Conde, M.; Fernandez- Golfin, J.J.; Calvo, R.; Baonza, M.V.; de Palacios, P. (2012). Curves for the estimation of the moisture content of ten hardwoods by means of electrical resistance measurements. Forest Syst. 21 [1], 121-127.

Fernández-Golfín, J.I.; Conde García, M.; Fernández-Golfín, J.J.; Conde García, M.; Hermoso, E.; Cabrero, J.C. (2014). Effect of temperature of thermotreatment on electrical conductivity of radiata pine timber. Maderas. Cienc. Tecnol. 16 [1], 25-36.

Conde García, M.; Conde García, M.; Fernández-Golfín, J.I. (2020). Improving the performance of wood moisture content measuring devices by new calibration curves for four European softwoods growing in Spain. Wood mater Sci. Eng. (In edition).

Forsén, H.; Tarvainen, V. (2000). Accuracy and functionality of hand held wood moisture content meters. VTT publications num. 420. 95 pp. ISBN 951-38-5581-3.

EN 1995-1-1:2016 Eurocode 5: Design of timber structures - Part 1-1: General - Common rules and rules for buildings.

Ministerio de Fomento (2009). Documento Básico SE-M Seguridad Estructural Madera. Código Técnico de la Edificación (in Spanish).

Johansson, P.; Bok, G.; Ekstrand-Tobin, A. (2013). The effect of cyclic moisture and temperature on mould growth on wood compared to steady state conditions. Build. Environ. 65, 178-184.

ISO 4628-4 (2004): Paints and varnishes - Evaluation of degradation of coatings - Designation of quantity and size of defects; and of intensity of uniform changes in appearance - Part 4: Assessment of degree of cracking.

ISO 4469:1981 Wood - Determination of radial and tangential shrinkage. International Organization for Standardization.

Fernández-Golfín Seco, J.I.; Conde García, M. (2007). Manual técnico de secado de maderas. 2019 p. ISBN 978-84-87381-37-9. Asociación de Investigación Técnica de las Industrias de la Madera y el Corcho (https://infomadera.net/modulos/publicaciones.php?id=6&claseact=publicaciones).

Bengtsson, C. (2001). Variation of moisture induced movements in Norway spruce (Picea abies). Ann. For. Sci. 58, 569-581.



How to Cite

Conde-García, M. ., Conde-García, M., & Fernández-Golfín, J. . (2021). Species effect on decay resistance of wood exposed to exterior conditions above the ground in Spain. Materiales De Construcción, 71(341), e236. https://doi.org/10.3989/mc.2021.11320



Research Articles