Materiales de Construcción, Vol 60, No 298 (2010)

Development of a new composite system: fire resistant and highly structural


https://doi.org/10.3989/mc.2010.47308

J. González
Metro de Madrid, Spain

D. Ranz
Sistemas y Procesos Avanzados, Zaragoza, Spain

J. A. Márquez
Metro de Madrid, Spain

A. Miravete
Universidad de Zaragoza, Spain

Abstract


Infrastructure and rail sectors share two singularities in terms of materials: highly structural performance and strict fire requirements. Moreover, there is a common growing interest in both sectors: the use of organic matrix composite materials due to their high performance, lightweight and in-service behavior. Traditionally, fire fillers have been added to the matrix, decreasing its mechanical performance in a critical way.

A study about composite materials formed by three different matrices and four different carbon fibers will be presented in this paper. A number of laminates have been manufactured by using these composite materials in order to analyze both the resin processing and the compatibility of the different matrices and fibers. This study is a need due to the fact that these matrices are fire-related and therefore further problems may arise in comparison with standard matrices.

Keywords


composites; mechanical properties; tensile strength; fire and smoke resistance

Full Text:


PDF

References


(1) Knop, A.; Scheib, W.: Chemistry and Application of Phenolic Resins. Berlin: Springer-Verlag (1979).

(2) Hunter, J.; Forsdyke, K. L.: Phenolic glass fiber-reinforced plastic and its recent applications. Polym Compos (1989); 2: 169-185.

(3) Sorathia, U.; Dapp, T.; Ker,r J.: “Flammability characteristics of composites for shipboard and submarine internal applications”. Proc 36th Int SAMPE Symp, CA (1991); 1868-1878.

(4) Sevart, J. L.; Griffin, O. H.; Gurdal, Z.; Warner, G.: “Flammability and toxicity of materials for marine vehicles”. Naval Eng J (1990); 45-54. doi:10.1111/j.1559-3584.1990.tb00899.x

(5) Tewarson, A.; Macaione, D. P.: “Polymers and composites-an examination of fire spread and generation of heat and fire products”. J Fire Sci (1993); 11: 421-41. doi:10.1177/073490419301100504

(6) Mouritz, A. P.; Mathys, Z. and Gibson, A. G.: “Heat release of polymer composites in fire”. Composites Part A (2006), vol. 37 (7): 1040-1054. doi:10.1016/j.compositesa.2005.01.030

(7) Sorathia, U.; Lyon, R.; Ohlemiller, T.; Griener, A.: “A review of fire test methods and criteria for composites”. SAMPE J (1997); 33: 23-31.

(8) Babrauskas, V.: “The cone calorimeter”. In: DiNenno, P. J.; Drysdale, D.; Beyler, C. L.; Walton, W. D.; Custer, R. L. P.; Hall, J. R.; Watts, J. M.; editors. SFPE Handbook of Fire Protection Engineering. Bethesda, Maryland: Society of Fire Protection Engineers (2002), pp. 3-63, pp. 3-81.

(9) Brown, J. R.; St John, N. A.: “Fire-retardant low-temperature-cured phenolic resins and composites”. TRIP (1996); 4: 416-420.

(10) Hshieh, F. Y; Beeson, D.: “Flammability testing of flame-retarded epoxy composites and phenolic composites”. Fire Mater (1997); 21: 41-49. doi:10.1002/(SICI)1099-1018(199701)21:1<41::AID-FAM595>3.0.CO;2-G

(11) Coneas, J. A.; Marcilla, A.; Font, R.; Caballero, J. A.: “Thermogravimetric studies on the thermal decomposition of polyethylene”. J Anal Appl Pyrolysis (1996); 36: 1-15. doi:10.1016/0165-2370(95)00917-5

(12) Regnier, N.; Mortaigne, B.: “Analysis by pyrolysis/gas chromatograhy/- mass spectrometry of glass fibre/vinylester thermal degradation products”. Polym Degrad Stability (1995); 49: 419-428. doi:10.1016/0141-3910(95)00129-A

(13) Bourbigot, S.; Flambard, X.; Poutch, F.: “Study of the thermal degradation of high performance fibres-application to polybenzazole and p-aramid fibres”. Polym Stability Degrad (2001); 74: 283-290. doi:10.1016/S0141-3910(01)00159-8

(14) Bansal, R. J.; Mittal, J.; Singh, P.: “Thermal stability and degradation studies of polyester resins”. J Appl Polym Sci (1989); 37: 1901-1908. doi:10.1002/app.1989.070370713

(15) Vogt, J.: “Thermal analysis of epoxy-resins: identification of decomposition products”. Thermochim Acta (1985); 85: 407-410. doi:10.1016/0040-6031(85)85611-2

(16) Arii, T.; Ichihara, S.; Nakagawa, H.; Fujii, N.: “A kinetic study of the thermal decomposition of polyesters by controlled-rate thermogravimetry”. Thermochim Acta (1998); 319: 139-149. doi:10.1016/S0040-6031(98)00414-6

(17) Babrauskas, V.; Peacock, R. D.: “Heat release rate: the single most important variable in fire hazard”. Fire Safety J (1992); 18: 255-272. doi:10.1016/0379-7112(92)90019-9

(18) Babrauskas, V.: “Why was the fire so big? HHR: The role of heat release rate in described fires”. Fire Arson Investig (1997); 47: 54-57.

(19) Babrauskas, V.: “The generation of CO in bench-scale fire tests and the prediction for real-scale fires”. Proc Int Conf Fire Mater (1992); 155-177.

(20) Brown, J. E.; Braun, E.; Twilley, W. H.: “Cone Calorimeter Evaluation of the Flammability of Composite Materials”. NBSIR (1988), 88-3733.

(21) Hume, J.: “Assessing the fire performance characteristics of GRP composites”. Int Conf Mater Des Against Fire, London (1992); 11-15.

(22) Sorathia, U.: “Flammability and fire safety of composite materials”. Proceedings of the 1st International Workshop on Composite Materials for Offshore Operations, Houston, Texas, 26-28 oct. (1993), pp. 309-317.

(23) Egglestone, G. T.; Turley, D. M.: “Flammability of GRP for use in ship superstructures”. Fire Mater (1994); 18: 255-260. doi:10.1002/fam.810180408

(24) Scudamore, M. J.: “Fire performance studies on glass-reinforced plastic laminates”. Fire Mater (1994); 18: 313-325. doi:10.1002/fam.810180507

(25) Brown, J. R.; Fawell, P. D.; Mathys, Z.: “Fire-hazard assessment of extendedchain polyethylene and aramid composites by cone calorimetry”. Fire Mater (1994); 18: 167-172. doi:10.1002/fam.810180304

(26) Gibson, A. G.; Hume, J.: “Fire performance of composite panels for large marine structures”. Plastics, Rubbers Compos Proc Applic (1995); 23: 175-83.

(27) Ohlemiller, T. J.; Cleary, T. G.: Upward flame spread on composite materials Fire and Polymers II: American Chemical Society (1995).

(28) Brown, J. R.; Mathys, Z.: “Reinforcement and matrix effects on the combustion properties of glass reinforced polymer composites”. Composites (1997); 28A: 675-681.

(29) Sastri, S. B.; Armistead, J. P.; Keller, T. M.; Sorathia U.: “Flammability characteristics of phthalonitrile composites”. Proceedings of the 42th International SAMPE Symposium 1997; May 4-8: 1032-1038.

(30) Le Bras, M.; Bourbigot, S.; Mortaigne, B.; Cordellier, G.: “Comparative study of the fire behaviour of glass-fibre reinforced unsaturated polyesters using a cone calorimeter”. Polym Polym Compos (1998); 6: 535-539.

(31) Lin, B.: “Cyanate esters with improved fire resistance”. Proc 44th Int SAMPE Symp 1999; 23-27: 1424-1430.

(32) Sorathia, U.; Gracik, T.; Ness, J.; Blum, M.; Le, A.; Scholl, B.; Long, G.: “Fire safety of marine composites”. Proc 8th Int Conf Marine Applic. Compos. Mater.; 14-16 March, Florida (2000).

(33) Koo, J. H.; Muskopf, B.; Venumbaka, S.; Van Dine, R.; Spencer, B.; Sorathia, U.: “Flammability properties of polymer composites for marine applications”. Proceedings of the 32nd International SAMPE Technical Conference (2000); 5-9: 136.




Copyright (c) 2010 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es