State of the art of TiO2 containing cementitious materials: self-cleaning properties

Authors

  • A. Maury Ghent University, Gante
  • N. De Belie Ghent University, Gante

DOI:

https://doi.org/10.3989/mc.2010.48408

Keywords:

titanium dioxide, photocatalysis, self-cleaning, cementitious materials, organic dyes

Abstract


Due to the physico-chemical characteristics of cementitious materials the aesthetic quality of these materials tend to decrease easily. On the other hand, the photocatalytic activity produced by TiO2 loaded cementitious materials have recently allowed them to include self-cleaning and air-purifying properties. However, because a better understanding of these properties is still needed, only a limited number of these materials is present in the construction market. As a strategy to improve this situation, non standards tests based on photodegradation of organic dyes have become widely used to evaluate the photocatalytic action of the different materials. Today, a wide spectrum of non easily comparable results have been produced. In order to improve this situation, this paper focuses on the description of the developed laboratory tests as well as on the evaluation of the self-cleaning potential of the first buildings containing TiO2. Finally, future research challenges in this field are identified.

Downloads

Download data is not yet available.

References

(1) Marinoni, N.; Pellizon Birelli, M.; Rostagno, Ch.; Pavese, A.: “The effects of atmospheric multipollutants on modern concrete”. Atmospheric Environment, vol. 37 (2003), pp. 4701-4712. doi:10.1016/j.atmosenv.2003.06.001

(2) Gaylarde, Ch.; Gaylarde, P.: “A comparative study of the major microbial biomass of biofilms on exteriors of buildings in europe and latin America”. Biodeterioration & Biodegradation, vol. 55 (2005), pp. 31-139.

(3) Kikuchi, Y.; Sunada, K.; Iyoda, T.; Hashimoto, K.; Fujishima, A.: “Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect”. Photochemistry and Photobiology A: Chemistry, vol. 106, (1997), pp. 51-56.

(4) Peller, J. R.; Whitman, R. L.; Griffith, S.; Harris, P.; Peller, C.; Scalzitti, J.: “TiO2 as a photocatalyst for control of the aquatic invasive alga, Cladophora, under natural and artificial light”. Photochemistry and Photobiology A: Chemistry, vol. 186 (2007), pp. 212-217.

(5) Agrios, A. G.; Pichat, P.: “State of the art and perspectives on materials and applications of photocatalysis over TiO2”. Reviews in Applied Electrochemistry, vol. 58 (2005), pp. 655-663. doi:10.1007/s10800-005-1627-6

(6) Demeestere, K.; Dewulf, J.; Van Langenhove, H.: “Heterogeneous photocatalysis as an adavanced oxidation process for the abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air: state of the art”. Critical reviews in Environmental Science and Technology, vol. 37 (2007), pp. 489-538. doi:10.1080/10643380600966467

(7) Toma, F. L.; Bertrand, G.; Klein, D.; Coddet, C.: “Photocatalytic removal of nitrogen oxides via titanium dioxide”. Environ. Chemical Letter 2 (2004), pp. 117-121. doi:10.1007/s10311-004-0087-2

(8) Lin, H.; Huang, C. P.; Li, W.; Ni, C.; Ismat Shah, S.; Yao-Hsuan, Tseng.: “Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol”. Applied Catalysis B: Environmental, vol. 68 (2006), pp. 1-11. doi:10.1016/j.apcatb.2006.07.018

(9) Bakardjieva, S.; Stengl, V.; Szatmary, L.; Subrt, J.; Lukac, J.; Murafa, N.; Niznansky, D.; Cizek, K.; Jirkovsky, J.; Petrova, N.: “Transformation of brookite-type TiO2 nanocrystals to rutile: correlation between microstructure and photoactivity”. Mater. Chem., vol. 16 (2006), pp. 1709-1716. doi:10.1039/b514632a

(10) Blöß, S. P.; Elfenthal, L.: Doped titanium dioxide as photocatalyst for UV and visible light. Proc. Int. RILEM Symposium on Photocatalysis, Environment and Construction Materials. Florence, Italy. 8-9 October (2007), pp. 31-38.

(11) Fujishima, A.; Honda, K.: “Electrochemical photolysis of water at a semiconductor electrode”. Nature, vol. 238 (1972), pp. 7-38. doi:10.1038/238037a0 PMid:12635268

(12) Herrmann, J. M.; Duchamp, C.; Karkmaz, M.; Thu Hoai, Bui; Lachheb, H.; Puzenat, E.; Guillard C.: “Environmental green chemistry as defined by photocatalysis”. Hazardous Materials, vol. 146 (2007), pp. 624-629. doi:10.1016/j.jhazmat.2007.04.095 PMid:17532130

(13) Gelover, S.; Gómez, L. A.; Reyes, K.; Leal, M. T.: “A practical demonstration of water disinfection using TiO2 films and sunlight”. Water Research, vol. 40 (2006), pp. 3274-3280. doi:10.1016/j.watres.2006.07.006 PMid:16949121

(14) Sunada, K.; Watanabe, T.; Hashimoto, K.: “Studies on photokilling bacteria on TiO2 thin film”. Photochemistry and Photobiology A: Chemistry, vol. 156 (2003), pp. 227-233.

(15) Benedix, R.; Dehn, F.; Quaas, J.; Orgass, M.: Application of titanium dioxide photocatalysis to create self-cleaning building materials. Lacer, vol. 5 (2000), pp. 157-168.

(16) Watanabe, T.; Nakajima, A.; Wang, R.; Minabe, M.; Koizumi, S.; Fujishima, A.; Hashimoto, K.: “Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass”. Thin Solid films, vol. 351 (1999), pp. 260-263. doi:10.1016/S0040-6090(99)00205-9

(17) Fujishima, A.; Rao, T. N.; Tryk, D. A.: “Titanium dioxide photocatalysis”. Photochemistry and Photobiology C: Photochemistry, Rewievs 1 (2000), pp. 1-21.

(18) Shimohigoshi, M.; Saeki, Y.: “Development of photocatalyst tile and commercial production”. Proc. of the RILEM Int. Symposium on Environment-Conscious Materials and Systems for Sustainable Development. Koriyama, Japan. 6-7 September (2004), (handouts), pp. 1-6.

(19) Hashimoto, K.: “TiO2 Photocatalysis towards novel building materials”. Proceedings International RILEM Symposium on Photocatalysis, Environment and Construction Materials. Florence, Italy. October (2007), pp. 3-8.

(20) Cassar, L.; Pepe, C.; Tognon, G.; Guerrini, G. L.; Amadelli, R.: “White cement for architectural concrete, possessing photocatalytic properties”. Proc. of the 11th Int. Congress on the Chemistry of Cement. Durban, South Africa (2003), vol. 4, pp. 1-11.

(21) Vallé, F.; Rout, B.; Guillot, L.; Pimpinelli, N.; Cassar, L.; Strini, A.; Mapelli, E.; Schiavi, L.; Gobin, C.; André, H.; Moussiopoulos, N.; Papadopoulos, A.; Bartzis, J., Maggos, T.; McIntyre, R.; Lehaut-Burnouf, C.; Henrichsen, A.; Laugesen, P.; Amadelli, R.; Kotzias, D.; Pichat P.: “Innovative self-cleaning and de-polluting facade surface”. Proc. CIB World Building, Toronto, Canada. 2-7 May, (2004), pp. 1-9.

(22) Dienemann, W.: “Selbstreiningende Fassadenplatten aus Beton: Self-cleaning concrete cladding panels”. BFT Betonwerk + Fertigteil- Technik. Concrete Plant + Precast technology, vol. 02 (2006), pp. 14-16.

(23) Cassar, L.; Beeldens, A.; Pimpinelli, N.; Guerrini, G. L.: “Photocatalysis of cementitious materials”. Proc. Int. RILEM Symposium on Photocatalysis, Environment and Construction Materials. Florence, Italy. 8-9 October (2007), pp. 131-145.

(24) Yuranova, T.; Sarria, V.; Jardim, W.; Rengifo, J.; Pulgarin, C.; Trabesinger, G.; Kiwi, J.: “Photocatalytic discoloration of organic compounds on outdoor building cement panels modified by photoactive coatings”. Photochemistry and Photobiology A: Chemestry, vol. 188 (2007), pp. 334-341.

(25) Zhang, Y.; Kruger, D.: “Methodology for aesthetic repair and rehabilitation of architectural concrete”. Master Thesis of Engineering and Environment Faculty, University of Johannesburg. Johannesburg, South Africa, February (2005), pp.1-182. Available from: http://etd.rau.ac.za/theses/available/etd-03232006-103034.

(26) Guerrini, G. L., Plassais, A.; Pepe, C.; Cassar, L.: “Use of photocatalytic cementitious materials for self-cleaning applications”. Proc. Int. RILEM Symposium on Photocatalysis, Environment and Construction Materials. Florence, Italy. 8-9 October (2007), pp. 219-226.

(27) Kurth, J. C.; Giannantonio, D. J.; Allain, F.; Sobecky, P.; Kurtis, K. E.: “Mitigating biofilm growth through the modification on concrete design and practice”. Proc. Int. RILEM Symposium on Photocatalysis, Environment and Construction Materials. Florence, Italy. 8-9 October (2007), pp. 195-202.

(28) De Muynck, W.; Maury Ramirez, A.; De Belie, N.; Verstraete, W.: “Evaluation of strategies to prevent algal fouling on white architectural and cellular concrete”. International Biodeterioration & Biodegradation, vol. 63 (2009), pp. 679-689. doi:10.1016/j.ibiod.2009.04.007
PMCid:373060

(29) Maury Ramírez, A.; De Belie, N.: “Evaluation of the algaecide activity of titanium dioxide on autoclaved aerated concrete”. Journal of Advanced Oxidation Technologies, vol. 12 (2009), pp. 100-104.

Downloads

Published

2010-06-30

How to Cite

Maury, A., & De Belie, N. (2010). State of the art of TiO2 containing cementitious materials: self-cleaning properties. Materiales De Construcción, 60(298), 33–50. https://doi.org/10.3989/mc.2010.48408

Issue

Section

Research Articles