X-ray spectra and theoretical elastic properties of crystalline calcium silicate hydrates: comparison with cement hydrated gels


  • H. Manzano LABEIN-Tecnalia, Derio
  • R. González-Teresa LABEIN-Tecnalia, Derio
  • J. S. Dolado LABEIN-Tecnalia, Derio
  • A. Ayuela Centro de Física de Materiales CSIC-UPV/EHU; Donostia Internacional Physics Center, San Sebastián




CSH gel, crystalline calcium silicate hydrates, elastic properties, nanostructure, atomistic simulation, X-ray


For 22 crystalline Calcium Silicates Hydrates, we have calculated their structure and their elastic properties by atomistic force field methods as well as simulate their Xray diffraction patterns. From the computed Young moduli, it can be suggested that the key parameters to determine the elastic properties of crystalline Calcium Silicate Hydrates are densities and water content. We have compared these trends with those of cementitious C-S-H gel and synthetic C-S-H type I as a function of their C/S ratios and nominal water content. Our comparison show that the experimentally suggested values of density and Young moduli for C-S-H gel lie in the range of the calculated CSH crystals. However, we conclude that a detailed correspondence might require investigating structurally within CSH gels the role of water and especially of Ca and Si sites through their C/S ratio.


Download data is not yet available.


(1) Taylor, H. F.: Cement Chemistry. 2nd ed. 1997, London, Thomas Telford Publishing. doi:10.1680/cc.25929

(2) Lea, F. M. and Hewlett, P. C.: Lea’s chemistry of cement and concrete. 4th ed. 1998, Oxford, Elsevier Butterworth-Heinemann, 1053.

(3) Richardson, I. G.: “Tobermorite/jennite -and tobermorite/calcium hydroxide-based models for the structure of CSH: applicability to hardened pastes of tricalcium silicate, beta-dicalcium silicate, Portland cement, and blends of Portland cement with blast-fumace slag, metakaolin, or silica fume”.Cem. Concr. Res., 2004, 34(9), pp. 1.733-1.777.

(4) Taylor, H. F. W.: “Proposed structure for calcium silicate hydrate gel”.Journal of the American Ceramic Society, 1986. 69(6), p. 464-467. doi:10.1111/j.1151-2916.1986.tb07446.x

(5) Bonaccorsi, E.; Merlino, S. and Kampf, A. R.: “The crystal structure of tobermorite 14 A (Plombierite), a CSH phase”.Journal of the American Ceramic Society, 2005, 88(3), p. 505-512. doi:10.1111/j.1551-2916.2005.00116.x

(6) Bonaccorsi, E.; Merlino, S. and Taylor, H. F. W.: “The crystal structure of jennite, Ca9Si6O18(OH)68H2O”.Cem. Concr. Res., 2004. 34(9), pp. 1.481-1.488.

(7) Richardson, I. G.: “The calcium silicate hydrates”.Cem. Concr. Res., 2008, 38, pp. 137-158. doi:10.1016/j.cemconres.2007.11.005

(8) Alizadeh, R.; Beaudoin, J. J. and. Raki, L.: “CSH (I)-A nanostructural model for the removal of water from hydrated cement paste?”. Journal of the American Ceramic Society, 2007, 90 (2), pp. 670-672. doi:10.1111/j.1551-2916.2006.01459.x

(9) Cong, X. D. and Kirkpatrick, R. J.: “Effects of the temperature and relative humidity on the structure of CSH gel”.Cem. Concr. Res., 1995, 25(6), pp. 1.237-1.245.

(10) Chen, J. J. et al.: “Solubility and structure of calcium silicate hydrate”.Cem. Concr. Res., 2004, 34(9): pp. 1.499-1.519.

(11) Janik, J. A. et al.: “Fractal structure of CSH and Tobermorite Phases”.Acta Physica Polonica A, 2001, 100(4): pp. 529-537.

(12) Nonat, A.: “The structure and stoichiometry of CSH”.Cement and Concrete Research, 2004, 34 (9): pp. 1.521-1.528.

(13) Jennings, H. M.: “Refinements to colloid model of CSH in cement: CM-II”.Cem. Concr. Res., 2008, 38 (3): pp. 275-289. doi:10.1016/j.cemconres.2007.10.006

(14) Manzano, H.; Ayuela, A. and Dolado, J. S.: “On the formation of cementitious CSH nanoparticles”.Journal of Computer-Aided Materials Design, 2007, 14(1), pp. 45-51. doi:10.1007/s10820-006-9030-0

(15) Feldman, R. F. and Sereda, P.: “A new model for hydrated Portland cement and its practical implications”.Eng J Can, 1970, 53 (8-9), pp. 53-59.

(16) Allen, A. J.; Thomas, J. J. and Jennings, H. M.: “Composition and density of nanoscale calcium-silicate-hydrate in cement”.Nature Materials, 2007, 6(4): pp. 311-316. doi:10.1038/nmat1871 PMid:17384634

(17) Constantinides, G. and Ulm F. J.: “The effect of two types of CSH on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling”.Cem. Concr. Res., 2004, 34(1), pp. 67-80. doi:10.1016/S0008-8846(03)00230-8

(18) Constantinides, G. and Ulm, F. J.: “The nanogranular nature of CSH”.Journal of the Mechanics and Physics of Solids, 2007, 55(1), pp. 64-90. doi:10.1016/j.jmps.2006.06.003

(19) Leach, A. R.: Molecular modelling: principles and applications. 2nd ed. 2001, Harlow, England; New York: Prentice Hall. XXIV, 744 p., [16] p. of plates.

(20) Manzano, H., Dolado, J. S. and Ayuela, A.: “Structural and Elastic Properties of the Main Species Present in the Cement Paste”.Acta Materialia, 2009, 57(5), pp. 1.666-1.674.

(21) Manzano, H. et al.: “Mechanical properties of crystalline calcium-silicate-hydrates: comparison with cementitious CSH gels. Physica Status Solidi a-Applications and Materials Science”, 2007, 204(6): pp. 1.775-1.780.

(22) Lewis, G. V. and Catlow, C. R. A.: “Potential models for ionic oxides”.Journal of Physics C-Solid State Physics, 1985. 18 (6): pp. 1.149-1.161.

(23) Du, Z. M. and De Leeuw, N. H.: “A combined density functional theory and interatomic potential-based simulation study of the hydration of nano-particulate silicate surfaces”.Surface Science, 2004, 554(2-3): pp. 193-210. doi:10.1016/j.susc.2004.02.001

(24) Laugesen, J. L.: “Density functional calculations of elastic properties of portlandite and foshagite”. Nanotechnology in Construction, 2003, Paisley, Scotland, The Royal Society of Chemistry.

(25) Gale, J. D. and Rohl, A. L.: “The General Utility Lattice Program (GULP)”.Molecular Simulation, 2003, 29(5): pp. 291-341. doi:10.1080/0892702031000104887

(26) Shannon, D. F.: “Conditioning of Quasi-Newton Methods for Functional Minimizations”.Mathematics of computation, 1970, 24: pp. 647-656.

(27) Macrae, C. F. et al.: “Mercury: visualization and analysis of crystal structures”.Journal of Applied Crystallography, 2006, 39, pp.453- 457. doi:10.1107/S002188980600731X

(28) Merlino, S.: “Okenite, Ca10Si18O46·18H2O - The first example of a chain and sheet silicate”.American Mineralogist, 1983, 68(5-6), pp. 614-622.

(29) Gard J. A.,Taylor, H. F. W.: "The crystal structure of foshagite", Acta Crystallogr. A,Vol. 13, nº (1960), pp.785-793

(30) Dai Y. S., Post, J. E.: "Crystal structure of hillebrandite: a natural analogue of calcium silciate hydrate (CSH) phasesin portland cement", Amer. Mineral., Vol. 80, nº 7-8 (1995), pp.841-844

(31) Alberti A.,Galli, E.: "The structure of nekoite, Ca3Si6O15·7H2O, a new type of sheet silicate", Amer. Mineral., Vol. 65, nº (1980), pp.1270-1276

(32) Ohashi, Y.: “Polysynthetically-twinned structures of enstantite and wollastonite”.Physics and Chemistry of Minerals, 1984, 10(5), pp. 217-229. doi:10.1007/BF00309314

(33) Hejny, C. and Armbruster, T.: “Polytypism in xonotlite Ca6Si6O17(OH)2”.Zeitschrift Fur Kristallographie, 2001, 216(7): pp. 396-408. doi:10.1524/zkri.216.7.396.20363

(34) Merlino, S.; Bonaccorsi, E. and Armbruster, T.: “The real structure of tobermorite 11 angstrom: normal and anomalous forms, OD character and polytypic modifications”.European Journal of Mineralogy, 2001. 13(3), pp. 577-590. doi:10.1127/0935-1221/2001/0013-0577

(35) Merlino, S.; Bonaccorsi, E. and Armbruster, T.: “Tobermorites: Their real structure and order-disorder (OD) character”.American Mineralogist, 1999, 84(10), pp. 1.613-1.621.

(36) Kuznatsova, T. P. et al.: “Refinement of the structure of calcium chondrodite, Ca5(SiO4)2(OH)2”.Soviet Ohysics Crystallography, 1980, 25, pp. 91-92.

(37) Taylor, H. F. W.: “The crystal structure of kilchoanite, Ca6(SiO4)(Si3O10), with some commentis on related phases”.Mineralogical Magazine, 1971, 38, pp. 26-31. doi:10.1180/minmag.1971.038.293.03

(38) Malik, K. M. A. and Jeffery, J. W.: “A re-investigation of the structure of afwillite”.Acta Crystallographica Section B-Structural Crystallography and Crystal Chemistry, 1976, 32(2), pp. 475-480. doi:10.1107/S0567740876003270

(39) Udagawa, S. et al.: “Refinement of the crystal structure of gamma Ca2SiO4”.Cem. Concr. Res., 1980, 10(2), pp. 139-144. doi:10.1016/0008-8846(80)90070-8

(40) Safronov, A .N. et al.: “The refinement of the crystal structure of the cement phase gamma-C6S3H”.Doklady Akademii Nauk SSSR, 1981. 256, pp. 1.387-1.389.

(41) Yammova, N. A., et al.: “Crystal structure of jaffeite”.Crystallography reports, 1993, 38, pp. 464-466.

(42) Taylor, H. F. W.: “The crystal structure of killalaite”.Mineralogical Magazine, 1977, 41, pp. 363-369. doi:10.1180/minmag.1977.041.319.08

(43) Dai, Y. S.; Harlow, G. E. and McGhie, A. R.: “Poldervaartite, Ca(Ca0.5Mn0.5)(SiO3(OH))(OH), a new acid neosilicate from the the Kalahari manganese field, South Africa: crystal structure and description”.American Mineralogist, 1993, 78, pp. 1.082-1087.

(44) Wan, C.; Ghose, S. and Gibbs, G. V.: “Rosenhahnite, Ca3Si3O8(OH)2: crystal structure and the stereichemical configuration of the hydroxylated trisilicate group, Si3O8(OH)2”.American Mineralogist, 1977, 62, pp. 503-512.

(45) Ma, Z., et al.: “Crystal structure refinement of suolinite and its significance to the cement techniques”.Chinese Science Bulletin, 1999, 44(23), pp. 2.125-2.130.

(46) Plassard, C. et al.: “Investigation of the surface structure and elastic properties of calcium silicate hydrates at the nanoscale”. Ultramicroscopy, 2004, 100(3-4): pp. 331-338. doi:10.1016/j.ultramic.2003.11.012 PMid:15231326

(47) Velez, K. et al.: “Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker”. Cement and Concrete Research, 2001, 31(4), pp. 555-561. doi:10.1016/S0008-8846(00)00505-6

(48) Jennings, H. M. et al.: “Characterization and modeling of pores and surfaces in cement paste: Correlations to processing and properties”.Journal of Advanced Concrete Technology, 2008, 6(1), pp. 5-29. oi:10.3151/jact.6.5

(49) Gonzalez-Teresa, R.; Morales-Florez, V.; Manzano, H.; Dolado, J. S.: "Structural models of randomly packed Tobermorite-like spherical particles: A simple computational approach", Mater. Construc., vol. 60, nº 298 (2010), pp. 7-15.

(50) Qian, Z.; Schlangen, E.; Ye, G.; van Breugel, K.: "Prediction of mechanical properties of cement at microscale", Mater. Construc., vol. 60, nº 297 (2010), pp.7-18. doi:10.3989/mc.2010.55209

(51) Bullard. J. W.: "A determination of hydration mechanisms for tricalcium silicate using a kinetic cellular automaton model", J. Am. Ceram. Soc., vol. 91, nº 7 (2008), pp.2.088-2.097.

(52) Garboczi, E. J.; Bentz, D. P.: "The effect of statistical fluctuation, finite size error, and digital resolution on the phase percolation and transport properties of the NIST cement hydration model", Cem. Concr. Res., vol. 31, nº 10 (2001), pp.1501-1514. doi:10.1016/S0008-8846(01)00593-2




How to Cite

Manzano, H., González-Teresa, R., Dolado, J. S., & Ayuela, A. (2010). X-ray spectra and theoretical elastic properties of crystalline calcium silicate hydrates: comparison with cement hydrated gels. Materiales De Construcción, 60(299), 7–19. https://doi.org/10.3989/mc.2010.57310



Research Articles