Materiales de Construcción, Vol 57, No 287 (2007)

Self-consolidating concrete homogeneity


https://doi.org/10.3989/mc.2007.v57.i287.55

M. O. Valcuende
Universidad Politécnica de Valencia (Valencia), Spain

C. Parra
Universidad Politécnica de Cartagena (Cartagena), Spain

J. C. Jarque
Instituto de Tecnología Cerámica. Universidad Jaime I de Castellón (Castellón), Spain

Abstract


Concrete instability may lead to the non-uniform distribution of its properties. The homogeneity of self-consolidating concrete in vertically cast members was therefore explored in this study, analyzing both resistance to segregation and pore structure uniformity. To this end, two series of concretes were prepared, self-consolidating and traditional vibrated materials, with different w/c ratios and types of cement. The results showed that selfconsolidating concretes exhibit high resistance to segregation, albeit slightly lower than found in the traditional mixtures. The pore structure in the former, however, tended to be slightly more uniform, probably as a result of less intense bleeding. Such concretes are also characterized by greater bulk density, lower porosity and smaller mean pore size, which translates into a higher resistance to pressurized water. For pore diameters of over about 0.5 μm, however, the pore size distribution was found to be similar to the distribution in traditional concretes, with similar absorption rates.

Keywords


self-consolidating concrete; segregation; porosity; absorption; permeability

Full Text:


PDF

References


(1) Saak, A.W., Jenning, H. y Shah, S.: “New methodology for designing self-compacting concrete”, ACI Materials Journal, vol. 98, nº 6 (2001), pp. 429-439.

(2) Jossic, L. y Magnin, A.: “Trainée et satbilité d’objet en fluide á seuil”, Les Cahiers de Rhéologie, vol. 18, nº 1 (2001), pp. 55-64.

(3) Beris, A. N., Tsamopoulos, J. A., Armstrong, R. C. y Brown, R. A.: “Creeping motion of a sphere through a Bingham plastic”, Journal of Fluid Mechanics, nº 158 (1985), pp. 219-244. doi:10.1017/S0022112085002622

(4) Bethmont, S., Aloia, L. D’, Stefani, C. y Leroy, R.: “Defining the satbility criterion of a sphere suspended in a cement paste: a way to study the segregation risk in self-compacting concrete (SCC)”, Proceedings of 3rd international RILEM symposium on self-compacting concrete, Reykjavik, 2003, pp. 94-105.

(5) Wallevik, O. H.: “Rheology, a scientific approach to develop self-compacting concrete”, Proceedings of 3rd international RILEM symposium on self-compacting concrete, Reykjavik, 2003, pp. 23-31.

(6) Jolicoeur, C., Khayat, K. H., Pavate, T. V. y Pagé, M.: “Evaluation of effect of chemical admixture and supplementary cementitious materials on stability of concrete-based materials using in-situ conductivity method. Superplasticizers and other chemical admixtures in concrete”, Proceedings of the sixth CANMET/ACI international conference, pp. 461-483, SP-195, en Malhotra, V. M. (ed.), American Concrete Institute, Farmington Hills, Michigan, 2000.

(7) Lowke, D., Wiegrink, K. y Schiessl, P.: “A simple and significant segregation test for SCC”, Proceedings of 3rd international RILEM symposium on self-compacting concrete, Reykjavik, 2003, pp. 358-366.

(8) Petrov, N., Khayat, K. H. y Tagnit-Hamou, A.: “Effect of stability of self-consolidating concrete on the distribution of steel corrosion characteristics along experimental wall elements”, Proceedings of 2nd international RILEM symposium on self-compacting concrete, Tokyo, 2001, pp. 441-450.

(9) Bartos, P.: “Towards new European Standards for Fresh SCC”, Design, Performance and Use of Self-Consolidating Concrete (SCC’2005-China), pp. 25-44. doi:10.1617/2912143624.003

(10) Daczko, J. y Kurtz, M.: “Development of high volume coarse aggregate self-compacting concrete”, Proceedings of 2nd international RILEM symposium on self-compacting concrete, Tokyo, 2001, pp. 403-412.

(11) Omoto, T. y Ozawa, K. (eds.), Recommendation for self-compacting concrete, JSCE Concrete Engineering Series 31, Japan Society of Civil Engineers,1999, p. 77.

(12) Bui, V. K., Montgomery, D., Hinczak, I. y Turner, K.: “Rapid testing method for segregation resistance of self-compacting concrete”, Cem. Concr. Res., vol. 32, nº 9 (2002), pp. 1489-1496. doi:10.1016/S0008-8846(02)00811-6

(13) Petrou, M. F., Harries, K. A., Gadala-Maria, F. y Kolli, V. G.: “A unique experimental method for monitoring aggregate settlement in concrete”, Cem. Concr. Res., vol. 30, nº 5 (2000), pp. 809-816. doi:10.1016/S0008-8846(00)00223-4

(14) Safawi, M. I., Iwaki, I. y Miura, T.: “The segregation tendency in the vibration of high fluidity concrete”, Cem. Concr. Res., vol. 34, nº 2 (2004), pp. 219-226. doi:10.1016/S0008-8846(03)00249-7

(15) Bilgil, A., Ozturk, B. y Bilgil, H.: “A numerical approach to determine viscosity-dependent segregation in fresh concrete”, Applied Mathematics and Computation, vol. 162, nº 1 (2005), pp. 225-245. doi:10.1016/j.amc.2003.12.086

(16) Assaad, J., Khayat, K. H. y Daczko, J.: “Evaluation of static stability of self-consolidating concrete”, ACI Materials Journal, vol. 101, nº 3 (2004), pp. 207-215.

(17) Rols, S., Ambroise, J. y Péra, J.: “Effects of different viscosity agents on the properties of self-levelling concrete”, Cem. Concr. Res., vol. 29, nº 2 (1999), pp. 261-266. doi:10.1016/S0008-8846(98)00095-7

(18) Rooney, M. J. y Bartos, P. J. M.: “Development of the settlement column segregation test for fresh self-compacting concrete”, Proceedings of 2nd international RILEM symposium on self-compacting concrete, Tokyo, 2001, pp. 109-116.

(19) Khayat, K. H., Manai, K. y Trudel, A.: “In situ mechanical properties of wall elements cast using self-consolidating concrete”, ACI Materials Journal, vol. 94, nº 6 (1997), pp. 491-500.

(20) Khayat, K. H., Tremblay, S. y Paultre, P.: “Structural response of self-consolidating concrete columns”, Proceedings of 1st international RILEM symposium on self-compacting concrete, Stockholm, 1999, pp. 291-306.

(21) Zhu, W., Gibbs, J. C. y Bartos, P. J.: “Uniformity of in situ properties of self-compacting concrete in full-scale structural elements”, Cement and Concrete Composites, vol. 23, nº 1 (2001), pp. 57-64. doi:10.1016/S0958-9465(00)00053-6

(22) Hoffmann, C. y Leemann, A.: “Homogeneity of structures made with self-compacting concrete and conventional concrete”, Proceedings of 3rd international RILEM symposium on self-compacting concrete, Reykjavik, 2003, pp. 619-627.

(23) Khayat, K. H. y Guizani, Z.: “Use of viscosity-modifying admixture to enhance stability of fluid concrete”, ACI Materials Journal, vol. 94, nº 3 (1997), pp. 332-340.

(24) Sedran, T.: Rhéologie et rhéometrie des bétons. Application aux bétons autonivelants. Tesis doctoral, École Nationale des Ponts et Chaussées, París, 1999, p. 219.

(25) Gibbs, J. C. y Zhu, W.: “Strength of hardened self compacting concrete”, Proceedings of 1st international RILEM symposium on self compacting concrete, Stockholm, 1999, pp. 199-209.

(26) Gettu, R., Gomes, P. C. y Agulló, L.: “Diseño de hormigones autocompactables de alta resistencia. Dosificación y métodos de caracterización”, Proceedings II congreso de ACHE, Madrid, 2002, pp. 13-22.

(27) Aïtcin, P.C.: High Performance Concrete, E&FN Spoon (ed.), Londres, 1999.

(28) Valcuende, M. O., Parra, C. y Benlloch, J.: “Permeabilidad, porosidad y resistencia a compresión de los hormigones autocompactables”, Mater. Construcc., vol. 55, nº 280 (2005), pp. 5-14.




Copyright (c) 2007 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es