Materiales de Construcción, Vol 56, No 283 (2006)

Composite cements containing natural pozzolan and granulated blast furnace slag


https://doi.org/10.3989/mc.2006.v56.i283.6

V. L. Bonavetti
Departamento de Ingenería Civil. Universidad Nacional del Centro, Argentina., Argentina

G. Menéndez
Departamento de Ingenería Civil. Universidad Nacional del Centro, Argentina., Argentina

H. A. Donza
Departamento de Ingenería Civil. Universidad Nacional del Centro, Argentina., Argentina

V. F. Rahhal
Departamento de Ingenería Civil. Universidad Nacional del Centro, Argentina., Argentina

E. F. Irassar
Departamento de Ingenería Civil. Universidad Nacional del Centro, Argentina., Argentina

Abstract


For reasons of market demand and Portland cement production,the manufacture of cements with two or more separately ground additions to produce customized cements is becoming common practice.
When pozzolan or slag content in this type of cements is high, however, the initial strength of the resulting product may be adversely impacted. This problem can be minimized by activating one or both of the replacement materials.
The present study analyzes the effect of Portland cement additions such as physically activated natural pozzolan(up to 20%) and/or granulated blast furnace slag (up to 35%) on mortar flexural and compressive strength. The results show that higher strength is attained in ternary than binary cements. Initially (2 and 7 days), the highest compressive strengths are reached by mortars with up to 13% natural pozzolan and 5% slag, whereas at later ages mortars with larger proportions of additions are found to perform best.

Keywords


Portland cement; pozzolan; granulated blast furnace slag; compressive strength; flexural strength

Full Text:


PDF

References


(1) Bonavetti, V. L.: “Hormigón con elevado contenido de adiciones (Green Concrete)”, Hormigones Especiales. Editado por la Asociación Argentina de Tecnología del Hormigón (2004), pp. 97-142.

(2) Lea, F. M.: The Chemistry of Cement and Concrete, Chemical Publishing Company, 1971.

(3) Isaia, G. C., Gastaldini, A. L. G. y Moraes, R.: “Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete”, Cement and Concrete Composites, nº 25 (1) (2003), pp. 69-76.

(4) ACI 233: Ground Granulated Blast-Furnace Slag as a Cementitious Constituent in Concrete. ACI Manual of Concrete Practice. Part 1. Materials and General Propierties of Concrete, 1998.

(5) ACI 232: Use of natural pozzolans in concrete. ACI Manual of Concrete Practice. Part 1. Materials and General Propierties of Concrete, 1998.

(6) Mehta, P. K.: “Pozzolanic and cementitious by-products in concrete-another look”, ACI SP nº 114, vol. 1 (1989), pp. 1-43.

(7) Escalante-García, J. I., Sharp, J. H.: “The microstructure and mechanical properties of blended cements hydrated at various temperatures”, Cement and Concrete Research, nº 31 (5) (2001), pp. 695-702.

(8) Fernández-Jiménez, A., Puertas, F. y Arteaga, A.: “Determination of kinetic equations of alkaline activation of blast furnace slag by means of calorimetric data”, Journal Thermal Analyses, nº 52 (1998), pp. 945-955.

(9) Menéndez, G., Bonavetti, V. L. y Irassar, E. F.: “Stength development of ternary blended cement with limestone filler and blast-furnace slag”, Cement and Concrete Composites, nº 25 (1) (2003), pp. 61-67.

(10) Carrasco, M. F., Menéndez, G., Bonavetti, V. L. y Irassar, E. F.: “Strength Optimization of ‘Tailor Made Cement’ with Limestone Filler and Blast Furnace Slag”, Cement and Concrete Research, nº 35 (7) (2005), pp. 1324-1331.

(11) Menéndez, G., Bonavetti, V. L., Donza, H., Rahhal, V. y Irassar, E. F.: “Cementos a medida con filler calcáreo y puzolana”, Proc. 15ª Reunión Técnica de la Asociación Argentina del Hormigón. Santa Fé, Argentina. En CD, 2003, 8 pp.

(12) European Standard for Common Cements: EN 197-1: 2000. Composition, Specifications and Conformity Criteria for Common Cements.

(13) Ellebrock, H. G., Sprung, S. y Kuhlmann, K.: “Particle size Distribution and Properties of Cement. Part III: Influence of theGrinding Process”, Zement-Kalk-Gips, nº 43 (1) (1990), pp. 13-19.

(14) Montgomery, D. y Runger, G.: Probabilidad y Estadística Aplicadas a la Ingeniería, México, Mc Graw Hill, 1996, p. 787.

(15) European Standard for Common Cements: EN 196-1: 2000. Determination of Strength.

(16) European Standard for Common Cements: EN 196-5: 2000. Pozzolanicity Test for Pozzolanic Cements.

(17) Opoczky, L. y Tamas, F. D.: Multicomponent composite cement. Advances in Cement Technology: Chemistry, Manufacture and Testing. Ed. S. N. Ghosh. New Delhi, India (2002), pp. 559-594.

(18) Giaccio, G., Giovanbattista, A. y Zerbino, R.: “Propiedades de los hormigones elaborados con alto volumen de puzolanas naturales”, Hormigón, nº 20 (1991), pp. 5-14.

(19) Bonavetti, V. L., Rahhal, V. F. y Irassar, E. F.: “Evolución de la hidratación de cementos con adiciones”, Materiales de Construcción, nº 52 (268) (2002), pp. 57-64.

(20) Rahhal, V. F.: Caracterización de las adiciones puzolánicas por calorimetría de conducción. Tesis Doctoral. Universidad Politécnica de Madrid, España, 2002, 608 pp.

(21) Zhang, C., Wang, A., Tang, M. y Liu, X.: “The Filling Role of Pozzolanic Material”, Cement and Concrete Research, 26 (6) (1996), pp. 943-947. doi:10.1016/0008-8846(96)00064-6




Copyright (c) 2006 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es