Materiales de Construcción, Vol 61, No 301 (2011)

AFM study of steel corrosion in aqueous solutions in concrete


https://doi.org/10.3989/mc.2010.59410

B. Díaz-Benito
Universidad Carlos III de Madrid. Dpto de Ciencia e Ingeniería de Materiales. Leganés, Spain

F. Velasco
Universidad Carlos III de Madrid. Dpto de Ciencia e Ingeniería de Materiales. Leganés, Spain

S. Guzmán
Universidad Carlos III de Madrid. Dpto de Ciencia e Ingeniería de Materiales. Leganés, Spain

R. Calabrés
Universidad Carlos III de Madrid. Dpto de Ciencia e Ingeniería de Materiales. Leganés, Spain

Abstract


Early corrosion stages are studied in carbon steel by means of a solution simulating that contained in concrete pores. Non-carbonated solution contains 5% NaCl. The atomic force microscopy (AFM) technique is used to study material performance after different immersion times (up to 48 h). Obtained data are compared to electrochemical ones (corrosion potential and polarization resistance). Analysis of images and roughness evolution along time shows that steel initially tends to reach passivity, although the passive layer rapidly loses its protective character due to chloride attack.

Keywords


Steel; Corrosion; Atomic Force Microscopy (AFM)

Full Text:


PDF

References


(1) Alcalde, J. S., Alcocel, E. G., Puertas, F., Lapuente, R., Garcés, P.: “Comportamiento de morteros de escoria activada alcalinamente con adición de fibras de carbón”, Mater. Construcc., Vol. 57, nº 288 (2007), pp. 33-48.

(2) Miranda, J. M., Otero, E., González, J. A., Hernández, L. S.: “Comportamiento del acero precorroído en solución saturada de Ca(OH)2 y en mortero de cemento. Posibilidades de rehabilitación”, Mater. Construcc., Vol. 57, nº 285 (2007), pp. 5-16.

(3) Zornoza, E., Garcés, P., Payá, J.: “Estudio de la velocidad de corrosión de aceros embebidos en morteros de cemento sustituidos con residuo de catalizador de craqueo catalítico (FC3R)”, Mater. Construcc., Vol. 58, nº 292 (2008), pp. 27-43.

(4) Bautista, A., Blanco, G., Velasco, F., Gutiérrez, A., Palacín, S., Soriano, L., Takenouti, H.: “Pasivación de aceros inoxidables dúplex en disoluciones que simulan el hormigón contaminado con cloruros”, Mater. Construcc., Vol. 57, nº 288 (2007), pp. 17-32.

(5) Martínez, I., Andrade, C.: “Application of EIS to cathodically protected steel: tests in sodium chloride solution and in chloride contaminated concrete”, Corros. Sci., Vol. 50, nº 10 (2008), pp. 2948-2958. doi:10.1016/j.corsci.2008.07.012

(6) Grattan, S. K. T., Taylor, S. E., Tong S., Basheer, P. A. M., Grattan, K. T. V.: “Monitoring of corrosion in structural reinforcing bars: performance comparison using in situ fiberoptic and electric wire strain gauge systems”, IEEE Sens. J., Vol. 9, nº11 (2009), pp. 1494-502. doi:10.1109/JSEN.2009.2019348

(7) Mietz, J., Fischer, J.: “Evaluation of NDT methods for detection of prestressing steel damage at post-tensioned concrete structures”, Mater. Corros., Vol. 58, nº10 (2007), pp. 789-794. doi:10.1002/maco.200704074

(8) Yuyama, S., Yokoyama, K., Niitani, K., Ohtsu, M., Uomoto, T.: “Detection and evaluation of failures in high-strength tendon of prestressed concrete bridges by acoustic emission”, Constr. Build. Mater., Vol. 21, nº 3 (2007), pp. 491-500. doi:10.1016/j.conbuildmat.2006.04.010

(9) Chang, C. W., Lien, H. S.: “Expansion stress analysis of ferroconcrete corrosion by digital reflection photoelasticity”, NDT&E Int., Vol. 40, nº 4 (2007), pp. 309-314. doi:10.1016/j.ndteint.2006.11.003

(10) Mancio, M., Kusinski, G., Monteiro, P. J. M., Devine, T. M.: “Electrochemical and in-situ SERS study of passive film characteristics and corrosion performance of 9%Cr microcomposite steel in highly alkaline environments”, J. ASTM Int., Vol. 6, nº 5 (2009), JAI101903.

(11) Budiansky, N. D., Bocher, F., Cong, H., Hurley, M. F., Scully, J. R.: “Use of coupled multi-electrode arrays to advance the understanding of selected corrosion phenomena”, Corrosion, Vol. 63, nº 6 (2007), pp. 537-554. doi:10.5006/1.3278405

(12) Josefowicz, J. Y., DeLuccia, J. J., Agarwala, V. S., Farrington, G. C.: “Atomic force microscopy observations of pitting corrosion and inhibition on 7075-T651 aluminum alloy in hydrochloric acid solutions”, Mater. Charact., Vol. 34, nº 2 (1995), pp. 73-79. doi:10.1016/1044-5803(94)00055-P

(13) Chen, Z. Y., Guo, X. P., Zhang, Q., Qu, J. E.: “AFM and electrochemical study of the effect of dodecylamine on carbon steel corrosion”, J. Mater. Sci., Vol. 41, nº 15 (2006), pp. 5033-5035. doi:10.1007/s10853-006-0104-x

(14) Kowal, K., DeLuccia, J., Josefowicz, J. Y., Laird, C., Farrington, G. C.: “In situ atomic force microscopy observations of the corrosion behavior of aluminum-copper alloys”, J. Electrochem. Soc., Vol. 143, nº 8 (1996), pp. 2471-2481. doi:10.1149/1.1837033

(15) Jun L., Lampner, D.: “In-situ AFM study of pitting corrosion of Cu thin films”, Colloid. Surface. A, Vol. 154, nº 1-2 (1999), pp. 227-237.

(16) Veleva, L., Alpuche-Aviles, M. A., Graves-Brook, M. K., Wipf, D. O.: “Comparative cyclic voltammetry and surface analysis of passive films grown on stainless steel 316 in concrete pore model solutions”, J. Electroanal. Chem., Vol. 537, nº 1-2 (2002), pp. 85-93. doi:10.1016/S0022-0728(02)01253-6

(17) Sánchez, J., Fullea, J., Andrade, C., Gaitero, J. J., Porro, A.: “AFM study of the early corrosion of a high strength steel in a diluted sodium chloride solution”, Corros. Sci., Vol. 50, nº 7 (2008), pp. 1820-1824. doi:10.1016/j.corsci.2008.03.013

(18) Zhang, F., Pan, J., Lin, C.: “Localized corrosion behaviour of reinforcement steel in simulated concrete pore solution”, Corros. Sci., Vol. 51, nº 9 (2009), pp. 2130-2138. doi:10.1016/j.corsci.2009.05.044

(19) Freire, L., Novoa, X. R., Montemor, M. F., Carmezim, M. J.: “Study of passive films formed on mild steel in alkaline media by the application of anodic potentials”, Mater. Chem. Phys., Vol. 114, nº 2-3 (2009), pp. 962-972. doi:10.1016/j.matchemphys.2008.11.012

(20) Marcus, P., Maurice V., Strehblow, H. H.: “Localized corrosion (pitting): A model of passivity breakdown including the role of the oxide layer nanostructure”, Corros. Sci., Vol. 50, nº 9 (2008), pp. 2698-2704. doi:10.1016/j.corsci.2008.06.047

(21) Boucherit, M. N., Tebib, D.: “A study of carbon steels in basic pitting environments”, Anti-Corros. Method. M., Vol. 52, nº 6 (2005), pp. 365-370.

(22) Saremi, M., Mahallati, E.: “A study on chloride-induced depassivation of mild steel in simulated concrete pore solution”, Cem. Concr. Res., Vol. 32, nº 12 (2002), pp. 1915-1921. S0008-8846(02)00895-5

(23) Abd El Halem, S. M., Abd El Aal, E. E., Abd El Wanees, S., Diab, E.: “Environmental factors affecting the corrosion behaviour of reinforcing steel: I. The early stage of passive film formation in Ca(OH)2 solutions”, Corros. Sci., Vol. 52, nº 12 (2010), pp. 3875-3882. doi:10.1016/j.corsci.2010.07.035

(24) Cheng, Y. F., Luo, J. L.: “Metastable Pitting of Carbon Steel under Potentiostatic Control”, J. Electrochem. Soc., Vol. 146, nº 3 (1999), pp. 970-976. doi:10.1149/1.1391707




Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es