Materiales de Construcción, Vol 60, No 300 (2010)

Modelling and experimental contrast of the mechanical behaviour of structural laminated glass


https://doi.org/10.3989/mc.2010.51909

E. Sanz-Ablanedo
Universidad de León, Spain

M. J. Lamela
Universidad de Oviedo, Spain

José R. Rodríguez-Pérez
Universidad de León, Spain

P. Arias
Universidad de Vigo, Spain

Abstract


This paper presents a numerical simulation of the mechanical behaviour of laminated glass plates (glass- PVB-glass) and its experimental verification. The viscoelastic characterization of the intermediate layer of PVB has been done by means of stress relaxation tests at various temperatures. The consideration of PVB as a viscoelastic material permits to analyze the real response of the structural element of laminated glass under time variations of temperature, of application of loading, of stress state, etc. Displacements obtained with the numerical analysis have been verified experimentally with laminated glass plates under lateral load using close range photogrammetry and dial gauges indicators. The analysis of results confirms the time dependent behaviour of the glass-PVB-glass laminate and suggests the validity of the proposed model.

Keywords


laminated glass; PVB; viscoelastícity; finite elements; photogrammetry

Full Text:


PDF

References


(1) Bennison, S. J.; Jagota, A.; Smith, C. A.: “Fracture of glass/poly(vinyl butyral) (Butacite) laminates in biaxial flexure”, Journal of the American Ceramic Society, vol. 82, nº 7 (1999), pp. 1761-1770. doi:10.1111/j.1151-2916.1999.tb01997.x

(2) Simulia Inc.: “ABAQUS/CAE version 6.7.2. Manual” (2007).

(3) Haldimann, M.; Luible, A.; Overend, M.: “Structural Use of Glass”, IABSE-AIPC-IVBH, Zu.rich, 2008.

(4) CEN. EN 572-1:2004, “Glass in building - Basic soda lime silicate glass products - Part 1: Definitions and general physical and mechanical properties”.

(5) Ferry, J. D.: “Viscoelastic Properties of Polymers”, Wiley, 1980.

(6) Gere, J. M.: “Resistencia de Materiales”, Thomson, 2002.

(7) Park, S. W.; Schapery, R. A.: “Methods of interconversion between linear viscoelastic material functions. Part I - A numerical method based on Prony series”, International Journal of Solids and Structures, vol. 36, nº 11 (1999), pp. 1653-1675. doi:10.1016/S0020-7683(98)00055-9

(8) Luhmann, T.; Robson, S.; Kyle, S.; Harley, I.: “Close Range Photogrammetry - Principles, Methods and Aplications”, Whittles Publishing, 2006.




Copyright (c) 2010 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es