Materiales de Construcción, Vol 57, No 288 (2007)

Passivation of duplex stainless steel in solutions simulating chloride-contaminated concrete


https://doi.org/10.3989/mc.2007.v57.i288.62

A. Bautista
Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química, Universidad Carlos III de Madrid, Spain

G. Blanco
Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química, Universidad Carlos III de Madrid, Spain

F. Velasco
Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química, Universidad Carlos III de Madrid, Spain

A. Gutiérrez
Departamento de Física Aplicada. Universidad Autónoma de Madrid, Spain

S. Palacín
Departamento de Física Aplicada. Universidad Autónoma de Madrid, Spain

L. Soriano
Departamento de Física Aplicada. Universidad Autónoma de Madrid, Spain

H. Takenouti
UPR-15 du CNRS, UPMC, París, France

Abstract


Most studies published to date on the corrosion behaviour of stainless reinforcing steel are based on austenitic steel. The market presence of corrugated duplex steel is growing, however. The present study compared passivity in 2205 type duplex and 304 type austenitic stainless steel. Polarization tests in chloride-containing Ca(OH)2 solutions confirmed the exceptional performance of duplex steels. X-ray photoelectronic spectroscopy (XPS) showed that the passive layer generated on duplex stainless steel in media simulating concrete pore solutions had a higher Cr content than the layer formed on steel in contact with the air. The XPS results also revealed that in duplex steel the form adopted by the passive layer Fe oxides was Fe3O4 in the solutions simulating concrete, rather than Fe2O3, as in duplex steel exposed to air. Electrochemical impedance spectroscopy (EIS) can be used to monitor the transformations taking place in the passive layer and analyze the factors involved.

Keywords


stainless steel; chlorides; reinforced concrete; corrosion; passivation

Full Text:


PDF

References


(1) Meira, G. R.; Padaratz, I. J.; Alonso, C. y Andrade, C.: “Efecto de la distancia al mar en la agresividad por cloruros en estructuras de hormigón en la costa brasileña”, Mater. Contrucc., vol. 53, nº 271-272 (2003), pp. 179-187.

(2) Pérez García, E. J.; Castro-Borges, P.; O’Reilly, V. A.; Seiglíe, I. y Fernández, I.: “Influencia de la dirección del viento en los perfiles de cloruro obtenidos en estructuras cercanas al mar Caribe. Caso del Viaducto Turiguanó-Cayo Coco en Cuba”, Mater. Contrucc., vol. 55, nº 277 (2005), pp. 75-81.

(3) Torres-Acosta, A. A.; Martínez-Madrid, M. y Muñoz-Noval, A.: “Capacidad remanente en vigas de hormigón que presentan corrosión localizada del acero de refuerzo”, Mater. Contrucc., vol. 53, nº 271-272 (2003), pp. 125-133.

(4) Smith, F. N. y Tullmin, M.: “Using stainless steel as long-lasting rebar material”, Mater. Performance, vol. 38, nº5 (1999), pp. 72-76.

(5) González, J. A.; Ramírez, E. y Bautista, A.: “Protection of steel embedded in chloride-containing concrete by means of inhibitors”, Cem. Concr. Res., vol. 28, nº 4 (1998), pp. 577-589. doi:10.1016/S0008-8846(98)00014-3

(6) Nürberger, U. (ed.): Stainless steel in concrete, State of the art report, Publication nº 18, Institute of Materials, London, 1996.

(7) Klinghoffer, O.; Frolung, T.; Kofoed, B.; Knudsen, A.; Jensen, F. M. y Skovsgaard, T.: “Practical and economical aspects of application of austenitic stainless steel, AISI 316, as reinforcement in concrete”, en J. Mietz, R. Polder, B. Elserner (eds.): Corrosion of Reinforcement in Concrete, pp. 121-133, European Federation of Corrosion, IOM Communications, London, 2000.

(8) Knudsen, A.; Jensen, F. M.; Klinghoffer, O. y Skovsgaard, T.: “Cost-effective enhancement of durability of concrete structures by intelligent use of stainless steel reinforcement”, Conference on Corrosion and Rehabilitation of Reinforced Concrete Structures, Florida, diciembre de 1998.

(9) Hartt, W. H.; Powers, R. G. y Virmani, Y. P.: “Job Site Evaluation of Corrosion Resistant Alloys for Use as Reinforcement in Concrete - Innovative Bridge Construction Program”, Concrete Bridge Conference, Reno, Nevada, mayo de 2006.

(10) Val, D.V. y Stewart, M. G.: “Life-cost análisis of reinforced concrete structures in marine environments”, Struct. Saf., vol. 25, nº 4 (2003), pp. 343-362. doi:10.1016/S0167-4730(03)00014-6

(11) Cramer, S. D.; Covino Jr, B. S.; Bullard, S. J.; Holcomb, G. R.; Russell, J. H.; Nelson, F. J.; Laylor, H. M. y Soltesz, S. M.: “Corrosion prevention and remediation strategies for reinforced concrete coastal bridges”, Cem. Concr. Comp., vol. 24, nº 5 (2002), pp. 101-107. doi:10.1016/S0958-9465(01)00031-2

(12) Stainless steel for outdor swimming pools - A refurbishment and upgrading initiative in Munich. Euro-Inox, Bruselas, 2003.

(13) James, E.: “A brighter future for ageing”, Concr. Eng., vol. 6, nº 2 (2002), pp. 64-67.

(14) British Concrete Society: “Guidance on the Use of Stainless Steel Reinforcement”, Technical Report, nº 51 (1998).

(15) Castro, H.; Rodríguez, C.; Belzunce, F. J. y Canteli, A. F.: “Mechanical properties and corrosion behaviour of stainless steel reinforcing bars”, J. Mater. Process. Techn., vol. 143-144 (2003), pp. 134-137. doi:10.1016/S0924-0136(03)00393-5

(16) Veleva, L.; Alpuche-Aviles, M. A.; Graves-Brook, M. y Wipf, D. O.: “Voltammetry and surface analysis of AISI 316 stainless steel in chloride-containing simulated concrete pore environments”, J. Electroanal. Chem., vol. 578, nº 1 (2005), pp. 43-53.

(17) Flint, G. N. y Cox, R. N.: “The resistance of stainless steel partly embedded in concrete to corrosion by seawater”, Mag. Concr. Res., vol. 40, nº 142 (1988), pp. 13-17.

(18) Hewitt, J. y Tullmin, M.: “Corrosion and stress corrosion cracking performance of stainless steel and other reinforcing bar materials in concrete”, en R. N. Swamy (ed.): Corrosion and Corrosion Protection of Steel in Concrete, Sheffield Academic Press, Sheffield, 1994, pp. 527-539.

(19) Bertolini, L.; Bolzoni, F.; Pastore, T. y Pedeferri, P.: “Stainless steel behavior in simulated concret pore solution”, Brit. Corros. J., vol. 31, nº 3 (1996), pp. 218-222.

(20) Veleva, L.; Alpuche-Aviles, M. A.; Graves-Brook, M. K. y Wipf, D. O.: “Electrochemical study and surface analysis of passive films on AISI 316 stainless steel grown in alkaline solutions”, J. Electroanal. Chem., vol. 537, nº 1-2 (2002), pp. 85-93.

(21) Abreu, C. M.; Cristóbal, M. J.; Montemor, M. F. y Nóvoa, X. R.; Pena, G. y Pérez, M. C.: “Galvanic coupling between carbon steel and austenitic stainless steel in alkaline media”, Electrochim Acta, vol. 47, nº 13-14 (2002), pp. 2271-2279. doi:10.1016/S0013-4686(02)00086-5

(22) Castro-Borges, P.; de Rincón, O. T.; Moreno, E. I.; Torres-Acosta, A. A.; Martínez-Madrid, M. y Knudsen, A.: “Performance of a 60- year-old concrete pier with stainless steel reinforcement”, Mater. Performance, vol. 41, nº 10 (2002), pp. 50-55.

(23) Escudero, M. L.; García-Alonso, M. C.; Capilla, F. y González, J. A.: “Study of the corrosion resistance of stainless steel in solution simulating concrete”, 15th International Corrosion Congress, Granada, 2002. Trabajo nº 441.

(24) Abreu, C. M.; Cristobal, M. J.; Losada, R.; Novoa, X. R.; Pena, G. y Pérez, M. C.: “Long-term behaviour of AISI 304L passive layer in chloride containing medium”, Electrochim Acta, vol. 51, nº 8-9 (2006), pp. 1881-1890. doi:10.1016/j.electacta.2005.06.040

(25) Abreu, C. M.; Cristóbal, M. J.; Losada, R.; Nóvoa, X. R.; Pena, G. y Pérez, M. C.: “High frequency impedance spectroscopy study of passive films formed on 316 stainless steel in alkaline medium”, J. Electroanal. Chem., vol. 572, nº 2 (2004), pp. 335-345. doi:10.1016/j.jelechem.2004.01.015

(26) Pastore, T. y Pedeferri, P.: “Corrosion behaviour of a duplex stainless steel in chloride contaminated concrete”, International Conference on Stainless Steel, ISIJ, Chiba, 1991, Proceedings vol. 1, pp. 351-358.

(27) Pastore, T.; Pedeferri, P.; Bertolini, L.; Bolzoni, F. y Cigada, A.: “Electrochemical study on the use of duplex stainless steels in concrete”, Int. Conf. Duplex Stainless Steels, Beeaune 1991. Proceedings vol. 2, pp. 905-913.

(28) Nürnberger, U.; Beul, W. y Onuseit, G.: “Corrosion behaviour of welded stainless reinforced steel in concrete”, Otto-Graf-Journal, vol. 4 (1993), pp. 225-259.

(29) Bautista, A.; Blanco, G. y Velasco, F.: “Corrosion Behaviour of Low-Nickel Austenitic Stainless Steels Reinforcements: A Comparative Study in Simulated Pore Solutions”, Cem. Concr. Res., vol. 36, nº 10 (2006), pp. 1922-1930. doi:10.1016/j.cemconres.2005.10.009

(30) Bertolini, L.; Gastaldi, M.; Pedeferri, P. y Redealli, E.: “Factors influencing the corrosion resistance of austenitic and duplex stainless steel bars in chloride bearing concrete”, 15th International Corrosion Congress, Granada, 2002. Trabajo nº 382. Abreu, C. M.; Cristobal, M. J.; Losada, R.; Merino, P.; Novoa, X. R.; Pena, G. y Pérez, M. C.: “Passive layer formation on duplex and austenitic stainless steels. Chloride induced modifications in alkaline media”, 15th International Corrosion Congress, Granada, 2002. Trabajo nº 598.

(31) Abreu, C. M.; Cristobal, M. J.; Novoa, X. R.; Pena, G. y Pérez, M. C.: “Estudio comparativo de las películas pasivas de tres aceros inoxidables mediante técnicas electroquímicas”, en J. A. Odriozola, J. Botella, C. Merino (eds.): Avances en Ciencia y Tecnología del Acero Inoxidable-II, Centro de Investigaciones Científicas Isla de la Cartuja, Sevilla, 2003, pp. 285-292.

(32) Abreu, C. M.; Cristobal, M. J.; Losada, R.; Nóvoa, X. R.; Pena, G. y Pérez, M. C.: “Comparative study of passive films of different stainless steels developed on alkaline medium”, Electrochim. Acta, vol. 49, nº 17-18 (2004), pp. 3049-3056. doi:10.1016/j.electacta.2004.01.064

(33) Andrade, C.; Merino, P.; Nóvoa, X. R.; Pérez, M. C. y Soler, L.: “Passivation of Reinforcing Steel in Concrete”, Mater. Sci. Forum, vol. 192-194 (1995), pp. 891-898.

(34) Jolivet, J. P. y Tronc, E.: “Interfacial electron transfer in colloidal spinel iron oxide. Conversion of Fe3O4-Fe2O3 in aqueous medium”, J. Colloid Interf. Sci., vol. 125, nº 2 (1988), pp. 688-701. doi:10.1016/0021-9797(88)90036-7

(35) Conway, B. E.: “Transitions from ‘Supercapacitor’ to ‘Battery’ behaviour in Electrochemical Energy Storage”, J. Electrochem. Soc.

(36) Stern, M. y Geary, A.: “Electrochemical polarization. I. A theoretical analysis of the shape of polarization curves”, J. Electrochem.

(37) Soc., vol. 104, nº 1 (1957), pp. 56-63.

(38) Bautista, A.; Blanco, G.; Takenouti, H.: “EIS study of passivation of austenitic and duplex stainless steels reinforecements in simulated pore solutions”, Cem. Concr. Comp., vol. 28, nº 3 (2006) pp. 212-219.




Copyright (c) 2007 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es