Differences in the rheological properties of calcitic and dolomitic lime slurries: influence of particle characteristics and practical implications in lime-based mortar manufacturing

Authors

  • A. Arizzi Departamento de Mineralogía y Petrología, Universidad de Granada
  • R. Hendrickx Department of Civil Engineering, Catholic University of Leuven, Heverlee
  • G. Cultrone Departamento de Mineralogía y Petrología, Universidad de Granada
  • K. Van Balen Department of Civil Engineering, Catholic University of Leuven, Heverlee

DOI:

https://doi.org/10.3989/mc.2011.00311

Keywords:

Lime, Rheology, Workability, Surface area, Microstructure

Abstract


The study of the rheological properties of lime suspensions is a useful means to evaluate the workability of lime mortars. In this work, we studied the flow behaviour of two industrial hydrated limes, one of calcitic and the other of dolomitic composition, by means of two types of rheometer with different geometry and setup mode. The obtained results were interpreted taking into account the differences in microstructure and surface properties of the suspended particles. Calcitic lime dry particles are formed by angular and polydisperse clusters and, once dispersed in water, they behave like thixotropic materials. On the other hand, the dolomitic lime is formed by nanoparticles and small round cluster and it shows a pronounced plastic behaviour in suspension. This fundamental difference between the two materials explains the traditional preference for dolomitic lime mortars for plastering and rendering applications.

Downloads

Download data is not yet available.

References

(1) Ferraris C. F., De Larrard F.: “Testing and Modeling of Fresh Concrete Rheology”, NISTIR-6094, Gaithersburg, Maryland (1998).

(2) Bager D. H., Geiker M. R., Jensen R. M.: “Rheology of self-compacting mortars. Influence of particle grading”, Nord. Concr. Res., Vol. 26 (2001), pp. 1-16.

(3) Fletcher, Hill: “Making the connection - particle size, size distribution and rheology”, http://www.chemie.de/articles/e/61207/

(4) Westerholm M., Lagerblad B., Silfwerbrand J., Forssberg E.: “Influence of fine aggregate characteristics on the rheological properties of mortars”, Cem. Concr. Compos., Vol. 30, n° 4 (2008), pp. 274-282. http://dx.doi.org/10.1016/j.cemconcomp.2007.08.008

(5) Hendrickx R.: “The adequate measurement of the workability of masonry mortar”, PhD Thesis, Catholic University of Leuven (2009).

(6) Wong H. H. C., Kwan A. K. H.: “Packing density of cementitious materials: part I − measurement using a wet packing method”, Mater. Struct., Vol. 41, n° 4 (2007), pp. 773-784.

(7) Golaszewski J., Szwabowski J.: “Influence of superplasticizers on rheological behaviour of fresh cement mortars”, Cem. Concr. Res., Vol. 34, n° 2 (2004), pp. 235-248. http://dx.doi.org/10.1016/j.cemconres.2003.07.002

(8) Yahia A., Tanimura M., Shimoyama Y.: “Rheological properties of highly flowable mortar containing limestone filler-effect of powder content and W/C ratio”, Cem. Concr. Res., Vol. 35, n° 3 (2005), pp. 532-539. http://dx.doi.org/10.1016/j.cemconres.2004.05.008

(9) Rodríguez Navarro C., Ruiz Agudo E., Ortega Huertas M., Hansen E.: “Nanostructure and irreversible colloidal behavior of Ca(OH)2: implications in cultural heritage conservation”, Langmuir, Vol. 21, n° 24 (2005), pp. 10948-10957. http://dx.doi.org/10.1021/la051338f PMid:16285758

(10) Thomson M. L.: “Plasticity, water retention, soundness and sand carrying capacity: what a mortar needs”, Bartos P., Groot C., Hughes J. J. (Eds.), International RILEM workshop on historic mortars: characterisation and tests, RILEM, Pasley, Scotland (2000), pp. 163-172.

(11) Barnes H. A., Hutton J. F., Walters K.: Introduction to Rheology, p 201, Ed. K. Walters, Elsevier, Amsterdam (1989).

(12) Shapiro A. P., Probstein R. F.: “Random packings of spheres and fluidity limits of monodisperse and bidisperse suspensions”, Phys. Rev. Lett., Vol. 68, n° 9 (1992), pp. 1422-1425. http://dx.doi.org/10.1103/PhysRevLett.68.1422 PMid:10046162

(13) UNE-EN 459-1:2001. “Building lime − Part 1: Definitions, specifications and conformity criteria”, Madrid (2002).

(14) Brunauer S., Emmet P. H., Teller J.: “Adsorption of gases in multimolecular layers”, J. Am. Chem. Soc., Vol. 60 (1938), pp. 309-319. http://dx.doi.org/10.1021/ja01269a023

(15) Barret E. P., Joyner L. J., Halenda P.: “The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms”, J. Am. Chem. Soc., Vol. 73 (1951), pp. 373-380. http://dx.doi.org/10.1021/ja01145a126

(16) ASTM D 854-92. Test Method for Specific Gravity of Soils (1993).

(17) Von Smoluchowski M. Bull. Int. Acad. Sci. (1903), p. 184.

(18) Parkhurst D.L., Appelo C.A.J. Users Guide to PHREEQC (version 2)-A Computer Program for Speciation, Batch Reaction, One-Dimensional Transport, and Inverse Geo- chemical Calculations. U.S. Geological Survey Water-Resources Investigation Report 99-4259, (1999) p. 312.

(19) Bousmina M., A.t-Kaidi A., Faisant J.B.: “Determination of shear rate and viscosity from batch mixer data”, J. Rheol., Vol. 43, n° 2 (1999), pp. 415-433. http://dx.doi.org/10.1122/1.551044

(20) A.t-Kaidi A., Marchal P., Choplin L., Chrissemant A. S., Bousmina M.: “Quantitative analysis of mixer-type rheometers using the Couette analogy”, Can. J. Chem. Eng., Vol. 80 (2002), pp. 1166-1174.

(21) Krieger I. M., Dougherty T. G.: “A mechanism for non-Newtonian flow in suspensions of rigid spheres”, Trans. Soc. Rheol., Vol. 3 (1959), pp. 137-152. http://dx.doi.org/10.1122/1.548848

(22) Ruiz Agudo E., Rodríguez Navarro C.: “Microstructure and rheology of lime putty”, Langmuir, Vol. 26, n° 6 (2010), pp. 3868−3877. http://dx.doi.org/10.1021/la903430z PMid:19916534

(23) Ambrosi M., Dei L., Giorgi R., Neto C., Baglioni P.: “Colloidal Particles of Ca(OH)2: Properties and Applications to Restoration of Frescoes”, Langmuir, Vol. 17, n° 14 (2001), pp. 4251-4255. http://dx.doi.org/10.1021/la010269b

(24) Giorgi R., Dei L., Ceccato M., Schettino C., Baglioni P.: “Nanotechnologies for Conservation of Cultural Heritage: Paper and Canvas Deacidification”, Langmuir, Vol. 18, n° 21 (2002), pp. 8198-8203. http://dx.doi.org/10.1021/la025964d

(25) Sing K. S. W., Everett D. H., Haul R. A. W., Moscou L., Pierotti R. A., Rouquérol J., Siemeniewska T.: “Reporting physisorption data for gas/solid systems”, Pure & Appl. Chem., Vol. 57, n° 4 (1985), pp. 603-619. http://dx.doi.org/10.1351/pac198557040603

(26) Yu A. B., Bridgwater J., Burbidge A.: “On the modelling of the packing of fine particles”, Powder Technol., Vol. 92, n° 3 (1997), pp. 185-194. http://dx.doi.org/10.1016/S0032-5910(97)03219-1

(27) Ren J., Lu S., Shen J., Hu B., “Dispersion characteristics of fine particles in water, ethanol and kerosene”. Chin. Sci. Bull., Vol. 45 n° 15 (2000), pp. 1376-1380. http://dx.doi.org/10.1007/BF02886241

(28) Moreno Botella R.: Reología de suspensiones cerámicas, pp. 325, CSIC, ISBN 84-00- 08322-9 (2005).

(29) Wierenga A. M., Philipse A. P.: “Low-shear viscosity of isotropic dispersions of (Brownian) rods and fibres; a review of theory and experiments”, Colloids Surf., Vol. 137 (1998), pp. 355-372. http://dx.doi.org/10.1016/S0927-7757(97)00262-8

(30) M.ller P. C. F., Mewis J., Bonn D.: “Yield stress and thixotropy: on the difficulty of measuring yield stress in practice”, Soft Matter, Vol. 2, n° 4 (2006), pp. 274-283. http://dx.doi.org/10.1039/b517840a

(31) Barnes H. A.: “A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character and cure”, J. Non-Newtonian Fluid Mech., Vol. 56, n° 3 (1995), pp. 221-251. http://dx.doi.org/10.1016/0377-0257(94)01282-M

(32) Struble L., Sun G. K.: “Viscosity of Portland cement paste as a function of concentration”, Adv. Cem. Based Mater., Vol. 2 (1995), pp. 62-69.

Downloads

Published

2012-06-30

How to Cite

Arizzi, A., Hendrickx, R., Cultrone, G., & Van Balen, K. (2012). Differences in the rheological properties of calcitic and dolomitic lime slurries: influence of particle characteristics and practical implications in lime-based mortar manufacturing. Materiales De Construcción, 62(306), 231–250. https://doi.org/10.3989/mc.2011.00311

Issue

Section

Research Articles