Engineered barriers for radioactive waste confinement

Authors

  • R. Fernández Instituto Eduardo Torroja de Ciencias de la Construcción (CSIC)

DOI:

https://doi.org/10.3989/mc.2011.55909

Keywords:

radioactive waste, deep geological repository, engineered barriers, concrete, bentonite

Abstract


Nuclear power plants generate long-lived radioactive waste of high toxicity. The security assessment of repositories destined to definitive confinement of radioactive waste has been studied for several decades. Deep geological repositories are technically feasible and begin to be built by some pioneer countries. The scientific evaluation of interactions between the different engineered barriers is studied by laboratory experiments, natural analogues and modeling studies. The three methods are able to represent and validate the main geochemical processes that take place in the near field. This paper reviews the scientific and technical basis of the concept of geological disposal, with particular focus on the methods of study applied to the evaluation of geochemical stability of the bentonite barrier.

Downloads

Download data is not yet available.

References

(1) Espejo, C.: “La producción de electricidad de origen nuclear en España”, Boletín de la AGE, 33 (2002), pp. 65-77.

(2) Comisión Europea: Geological Disposal of Radioactive Wastes Produced by Nuclear Power: from concept to implementation, In Report No: EUR 21224, http://europa.eu.int/comm/research/energy/pdf/waste_disposal_en.pdf Ed. (2004), p. 45.

(3) Chapman, N. A.: “Geological Disposal of Radioactive Wastes – Concept, Status and Trends”, Journal of Iberian Geology, 32 (1) (2006), pp. 7-14.

(4) Hedin, A.: Spent nuclear fuel. How dangerous is it?, In: Swedish Nuclear Fuel Waste Management Co. Stockholm, Swed. (1997), pp 1-60.

(5) Astudillo, J.: “El almacenamiento geológico profundo de los residuos radiactivos de alta actividad. Principios básicos y tecnología”, ENRESA Ed. ENRESA, Madrid, 2001, p. 200.

(6) Brookins, D. G.: Geochemical aspects of radioactive waste disposal, Springer-Verlag Ed. New York, 1984, p. 347.

(7) Svensson, D.; Eng, A. y Sellin, P.: “Alternative buffer material experiment, In: Clays in natural and engineered barriers for radioactive waste confinement”, Andra Ed. Andra: Lille, France (2007), pp. 223-224.

(8) Caballero, E.; Jiménez de Cisneros, C.; Huertas, F. J.; Huertas, F.; Pozzuoli, A. y Linares, J.: “Bentonite from Cabo de Gata, Almería, Spain: a mineralogical and geochemical overview”, Clay Minerals, 40 (2005), pp. 463-480. http://dx.doi.org/10.1180/0009855054040184

(9) Grim, R. E.: Clay Mineralogy, M. G. Hill Ed. USA, 1968.

(10) Cho, W. J.; Kwon, S. y Park, J. H.: “KURT, a small-scale underground research laboratory for the research on a high-level waste disposal”, Annals of Nuclear Energy, 35 (1) (2008), pp. 132-140. http://dx.doi.org/10.1016/j.anucene.2007.05.011

(11) Gaucher, E. C. y Blanc, P.: “Cement/clay interactions - A review: Experiments, natural analogues, and modeling”, Waste Management, 26 (7) (2006), pp. 776-788. http://dx.doi.org/10.1016/j.wasman.2006.01.027 PMid:16574392

(12) Cuevas, J.; Leguey, S.; Ramírez, S.; Sánchez, L.; Vigil de la Villa, R.; Alonso, M. C.; Andrade, C. y Hidalgo, A.: “Proyecto Ecoclay: Interacción Hormigón-bentonita”, Estratos, 69 (2004), pp. 11-15.

(13) García Calvo, J. L.; Alonso, M. C.; Fernández Luco, L.; Hidalgo, A. y Sánchez, M.: “Implications of the use of low-pH cementitious materials in high activity radioactive waste repositories”. In International conference Underground disposal unit design and emplacement processes for a deep geological repository, Prague (2008), pp 1-11.

(14) Alonso, M. C.; Fernández-Luco, L.; García, J. L.; Hidalgo, A. y Huertas, F.: “Low-pH Cementitious Materials, Design and Characterization”. In Proceedings of the 12th International Congress of the Chemistry of Cement. J. J. Beaudoin, J. M. Makar L. y Raki Eds. Montreal, Canada (2007), pp. W4-08.06.

(15) MacQuarrie, K. T. B. y Mayer, K. U.: “Reactive transport modeling in fractured rock: A state-of-the-science review”, Earth-Science Reviews, 72 (3-4) (2005), pp. 189-227. http://dx.doi.org/10.1016/j.earscirev.2005.07.003

(16) Van der Lee, J. y De Windt, L.: “Present state and future directions of modeling of geochemistry in hydrogeological systems”, Journal of Contaminant Hydrology, 47 (2-4) (2001), pp. 265-282. http://dx.doi.org/10.1016/S0169-7722(00)00155-8

(17) Fernández, R.; Cuevas, J. y Mäder, U. K.: “Modelling concrete interaction with a bentonite barrier”, European Journal of Mineralogy, 21 (1) (2009), pp. 177-191.

(18) Petit, J.-C.: “Natural analogues for the design and performance assessment of radioactive waste forms: A review”, Journal of Geochemical Exploration, 46 (1) (1992), pp. 1-33. http://dx.doi.org/10.1016/0375-6742(92)90099-T

(19) Apted, M. J.: “Natural analogues for predicting the reliability of the engineered barrier system for high-level waste”, Journal of Geochemical Exploration, 46 (1) (1992), pp. 35-62. http://dx.doi.org/10.1016/0375-6742(92)90100-M

(20) Alexander, W. R.; Dayal, R.; Eagleson, K.; Eikenberg, J.; Hamilton, E.; Linklater, C. M.; McKinley, I. G. y Tweed, C. J.: “A natural analogue of high pH cement pore waters from the Maqarin area of northern Jordan. II: results of predictive geochemical calculations”, Journal of Geochemical Exploration, 46 (1) (1992) 133-146. http://dx.doi.org/10.1016/0375-6742(92)90104-G

Downloads

Published

2011-09-30

How to Cite

Fernández, R. (2011). Engineered barriers for radioactive waste confinement. Materiales De Construcción, 61(303), 485–492. https://doi.org/10.3989/mc.2011.55909

Issue

Section

Technical Note