Superface energy of several construction materials

Authors

  • J. Rubio Instituto de Cerámica y Vidrio (CSIC), Madrid (España)
  • M.ª J. Sánchez Instituto de Cerámica y Vidrio (CSIC), Madrid (España).
  • M.ª R. Elvira Instituto de Cerámica y Vidrio (CSIC), Madrid (España).
  • F. Rubio Instituto de Cerámica y Vidrio (CSIC), Madrid (España).
  • J. L. Otero Instituto de Cerámica y Vidrio (CSIC), Madrid (España)

DOI:

https://doi.org/10.3989/mc.2006.v56.i283.7

Keywords:

construction materials, energy, surface, chromatography, characterization

Abstract


Inverse gas chromatography at infinite dilution was used to characterize the surface of different construction materials (marble, sandstone, granite and brick). Surface energy can be divided into two components: dispersive and polar or acid-base. The highest dispersive energy value was found for sandstone, while the values for the other three materials were all very similar. The lower dispersive energy variation exhibited by sandstone with temperature changes is an indication that substances interact equally well with its surface at any temperature. All the materials were found to be amphoteric, with both acid and alkaline components, although acidity was greater in granite and brick and sandstone and marble had higher alkalinity.

Downloads

Download data is not yet available.

References

(1) Arias, P, Herráez, J., Lorenzo, H. y Ordóñez, C.: “Control of structural problems in cultural heritage monuments using close-range photogrammetry and computer methods”, Comput. Struct., vol. 83 (2005), pp. 1754-1766. doi:10.1016/j.compstruc.2005.02.018

(2) Pegon, P., Pinto, A. V., Géradin, M.: “Numerical modelling of stone-block monumental structures”, Comput. Struct., vol. 79 (2001), pp. 2165-2181. doi:10.1016/S0045-7949(01)00070-0

(3) Carreti, E. y Dei, L.: “Physicochemical characterization of acrylic polymeric resins coating porous materials of artistic interest”, Prog. Org. Coat., vol. 49 (2004), pp. 282-289. doi:10.1016/j.porgcoat.2003.10.011

(4) Torraca, G.: Porous building materials-materials science for architectural conservation. Int. Cent. for the Study of the Preservation and the Restoration of Cultural Property (1981), pp. 64-66.

(5) Croci, G.: The conservation and structural restoration of architectural heritage, Southhampton, UK, Boston, USA: Computational Mechanics Publications, 1998, p. 68.

(6) Weaver, M. y Matero, F. G.: Conserving buildings-guide to techniques and materials. Wiley, New York, 1997, p. 133.

(7) Iñigo, A. C., Vicente, M. A. y Rives, V.: “Weathering and decay of granitic rocks: its relation to their pore network”. Mechanics Mater., vol. 32 (2000), pp. 555-560. doi:10.1016/S0167-6636(00)00027-2

(8) Lopez-Arce, P., García-Guinea, J.: “Weathering traces in ancient bricks from historic buildings”, Build. Environ., vol. 40 (2005), pp. 929-941. doi:10.1016/j.buildenv.2004.08.027

(9) Lopez-Arce, P., García-Guinea, J., Gracia, M. y Obis, J.: “Bricks in historical buildings of Toledo City: characterisation and restoration”, Mater. Charact., vol. 50 (2003), pp. 59-68. doi:10.1016/S1044-5803(03)00101-3

(10) Fowkes, F. M.: Recent Advances in Adhesion. Gordon and Breach, New York, 1973.

(11) Schultz, J., Lavielle, L. y Martin, C.: “Surface Properties of Carbon Fibers by Inverse Gas Chromatograpy”, J. Adhesion, vol. 23 (1987), pp. 45-60.

(12) Gutierrez, M. C., Rubio, J., Rubio, F. y Oteo, J. L.: “Inverse Gas Chromatography: a new approach to the estimation of specific interactions”, J. Chrom. A., vol. 845, 53 (1999), pp. 53-66. doi:10.1016/S0021-9673(99)00021-7

(13) Oteo, J. L., Elvira, M. R., Alonso, L. y Rubio, J.: “Tratamientos de protección superficial de materiales de construcción por nuevos materiales híbridos organo-inorgánicos multifuncionales”, Bol. Soc. Esp. Ceram. Vidrio (2005). En imprenta.

(14) Shui, M.: “Polymer surface modification and characterization of particulate calcium carbonate fillers”, App. Surf. Sci., vol. 220 (2003), pp. 359-366. doi:10.1016/S0169-4332(03)00866-3

(15) Rubio, J., Rubio, F. y Oteo, J. L.: “Energía y heterogeneidad energética de la superficie del vidrio”, Bol. Soc. Esp. Cerámica y Vidrio, vol. 36, nº 5 (1997), pp. 485-495.

(16) Rodríguez, M. A., Rubio, J., Rubio, F., Liso M. J. y Oteo, J. L.: “Application of the Inverse Gas Chromatography to the Study of the Surface Properties of Slates”, Clay. Clay Miner, vol. 45, nº 5 (1997), pp. 670-680.

(17) Milonjic, S. K.: “Surface properties of metal ions modified silica”, Colloids Surfaces A: Phys. Eng. Asp., vol. 149 (1999), pp. 461-466. doi:10.1016/S0927-7757(98)00563-9

(18) Peña-Alonso, R., Tamayo, A., Rubio, F. y Rubio, J.: “Influence of boron concentration on the surface properties of teos-pdms hybrid materials”, J. Sol-Gel Sci. Tech., vol. 36 (2005), pp. 113-124.

(19) Bogillo, V. I., Shkilev, V. P. y Voelkel, A.: “Chemical Heterogeneity of Metal Oxide Surfaces as Studied by Inverse Gas Chromatography at Finite Concentrations”, Ads. Sci. Tech., vol. 14 (1996), pp. 189-198.

(20) Donnet, J. B., Park, S. J. y Balard, H.: “Evaluation of Specific Interactions of Solid Surfaces by Inverse Gas Chromatography”, Chromatographia, vol. 31, nº 9/10 (1991), pp. 434-440. doi:10.1007/BF02262385

(21) Hamieh, T., Nardin, M., Rageul-Lescou, M., Haidara, H. y Schultz, J.: “Study of acid-base interactions between some metallic oxides and model organic molecules”, Colloids Surf. A., vol. 125 (1997), pp. 155-161. doi:10.1016/S0927-7757(96)03855-1

(22) Rubio, F., Rubio, J. y Oteo, J. L.: “Surface Energy Changes of Heat Treated TEOS Derived Silica Xerogels”, J. Sol-Gel Sci. Tech., vol. 10 (1997), pp. 31-44.

(23) Bautista, M. C., Rubio, J. y Oteo, J. L.: “Surface Thermodynamic Analysis of Cleaned Silicoaluminate Glass Fibres”, J. Mater. Sci., vol. 30 (1995), pp. 1595-1600. doi:10.1007/BF00375270

(24) Martín, L., Rubio, J. y Oteo, J. L.: “Caracterización de vidrio poroso por Cromatografía gaseosa y recubrimiento cero”, Bol. Soc. Esp. Cerámica y Vidrio, vol. 31, nº 3 (1992), pp. 233-237.

Downloads

Published

2006-09-30

How to Cite

Rubio, J., Sánchez, M. J., Elvira, M. R., Rubio, F., & Otero, J. L. (2006). Superface energy of several construction materials. Materiales De Construcción, 56(283), 37–47. https://doi.org/10.3989/mc.2006.v56.i283.7

Issue

Section

Research Articles