Fluorinated anti-graffiti coating for natural stone

Authors

  • P. M. Carmona-Quiroga Instituto de Ciencias de la Construcción Eduardo Torroja (CSIC), Madrid
  • S. Martínez-Ramírez Instituto de Ciencias de la Construcción Eduardo Torroja (CSIC), Madrid
  • M. T. Blanco-Varela Instituto de Ciencias de la Construcción Eduardo Torroja (CSIC), Madrid

DOI:

https://doi.org/10.3989/mc.2008.v58.i289-290.76

Keywords:

fluroalkyl siloxane, anti-vandalism products, limestone, granite, anti-graffiti coatings, contact angle

Abstract


The water- and dirt-repellent properties of fluorinated products have been used primarily in waterproof coatings. The development of new materials or the definition of new functions for existing substances may extend the possible application of these systems to other specific uses, such as new anti-graffiti coatings to guarantee easy clean-up in the event of this kind of vandalism.
The present study aimed to assess the anti-graffiti protection afforded by a fluoralkyl siloxane in limestone and granite.
The results show that the surface of the substrates darkened and yellowed slightly under the treatment and that the total colour variations (ΔE*) found after the first cleaning were similar in the two substrates. After subsequent graffiti painting-cleaning cycles, ΔE* was greater in the granite, due to its more rugged surface.
Water absorption declined, particularly in the low porosity granite, after it was coated. Water repellence was likewise more effective in the granite, whose low initial permeability decreased, but less steeply than in the limestone. The graffiti lowered the water repellence of the treated surfaces. Although the waterproof protection afforded by the coating was not fully recovered after cleaning, the treated specimens were still more water repellent than the uncoated stone.
The siloxane polymer penetrated the limestone to a depth of several tenths of a micron, but remained on the surface in the granite.

Downloads

Download data is not yet available.

References

(1) D'Alessio, A., Turchi, F., Narducci, P., Vergamini, P., Ciardelli, F. y Catanorchi, S.: “Fluorinated polymers as stone-protective materials: an FTIR study on intermolecular interactions”, Polymer Internacional, vol. 53 (2004), pp. 1567-1571. doi:10.1002/pi.1600

(2) Ínigo, A.C., Vicente-Tavera, S. y Rives, V.: “Diseño estadístico aplicado a las propiedades hídricas como control de tratamientos de consolidación y/o hidrofugación sobre granitos”, Materiales de Construcción, vol. 56, nº 281 (2006), pp 19-30.

(3) Chiantore, O. y Lazzari, M.: “Photo-oxidative stability of paraloid acrylic protective polymers”, Polymer, vol. 42 (2001), pp.17-27. doi:10.1016/S0032-3861(00)00327-X

(4) Chiantore, O., Lazzari, M., Aglietto, M., Castelvetro, V. y Ciardelli, F.: “Photochemical stability of partially fluorinated acrylic protective coatings I. Poly(2,2,2-trifluoroethyl methacrylate) and poly(1H,1H,2H,2H-perfluorodecyl methacrylate-co-2-ethylhexyl methacrylate)s”,Polymer Degradation and Stability, vol. 67 (2000), pp. 461-467. doi:10.1016/S0141-3910(99)00146-9

(5) Malshe, V.C., Elango, S., Bhagwat, S.S. y Maghrabi, S.S.: “Fluorinated acrylic copolymers: Part II: Polymeric surfactants”, Progress in Organic Coating, vol. 53 (2005), pp. 212-216. doi:10.1016/j.porgcoat.2005.03.004

(6) Dobkowski, Z. y Zielecka, M.: “The physicochemical characterization of fluropolymer-modified polysiloxane coatings”, Polimery, vol. 46, nº 11-12 (2001), pp. 835-839.

(7) Brady Jr., R.F.: “Properties which influence marine fouling resistance in polymers containing silicon and fluorine “, Progress in Organic Coating, vol. 35 (1999), pp. 31-35. doi:10.1016/S0300-9440(99)00005-3

(8) Drioli, E., Gagliardi, R., Donato, L. y Checchetti, A.: “CoPVDF membranes for protection of cultural heritages”, Journal of Membrane Science, vol. 102 (1995), pp. 131-138. doi:10.1016/0376-7388(94)00272-Z

(9) Moropoulou, A., Koulombi, N., Bakolas, A. y Haralampopoulos, G.: “Performance evaluation of conservation interventions to porous stone facades of historic buildings in heavily polluted urban centres”; Pitture e Vernici, European Coatings, vol 77, nº12-13 (2001), pp. 19-28.

(10) Álvarez de Buergo, M. y Fort, R.: “Basic methodology for the assessment and selection of water-repellent treatments applied on carbonatic materials”, Progress in Organic Coatings, vol. 43, (2001), pp. 258-266. doi:10.1016/S0300-9440(01)00204-1

(11) Brugnara, M., Degasperi, E., Della Volpe, C., Maniglio, D., Penati, A., Siboni, S., Toniolo, L., Poli, T., Invernizzi, S. y Castelvetro, V.: “The application of the contact angle in monument protection: new materials and methods”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 241 (2004), pp. 299-312. doi:10.1016/j.colsurfa.2004.04.035

(12) Brugnara, M., Della Volpe, C., Penati, A., Siboni, S., Poli, T. y Toniolo, L.: “Correct use of the contact angle in the evaluation of the protective action induced from polymer coating on the stone”, Annali di chimica, vol. 93 (2003), pp. 881-888.

(13) Pretsch, E., Clerc, T., Seibl, J. y Simon, W.: “Espectroscopía de infrarrojo Tablas de elucidación estructural de compuestos orgánicos por métodos espectroscópicos”, Editorial Alhambra, 1980, pp. 178-229.

(14) El Ola, S.M.A, Kotek, R., White, W.C., Reeve, J.A., Hauser, P. y Kim, J.H.: “Unusual polymerization of 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride on PET substrates”, Polymer, vol. 45 (2004), pp. 3215-3225. doi:10.1016/j.polymer.2004.02.041

(15) Everaert, E.P.J.M., van der Mei, H.C. y Busscher, H.J.: “Adhesion of yeasts and bacteria to fluoro-alkylsiloxane layers chemisorbed on silicone rubber”, Colloids Surfaces B. Bionterfaces, vol. 10 (1998), pp. 179-190.

(16) Hozumi, A. y Takai, O.: “Preparation of silicon oxide films having a water-repellent layer by multiple-step microwave plasma-enhanced chemical vapor deposition”, Thin Solid Films, vol. 334 (1998), pp. 54-59. doi:10.1016/S0040-6090(98)01116-X

(17) Gumula, T., Paluszkiewicz, C. y Blazewicz, M.: “Structural characterization of polysiloxane-derived phases produced during heat treatment”, Journal of Molecular Structure, vol. 704 (2004), pp. 259-262. doi:10.1016/j.molstruc.2003.12.064

(18) Medda, S.K., Kundu, D. y De, G.: ”Inorganic–organic hybrid coatings on polycarbonate.: Spectroscopic studies on the simultaneous polymerizations of methacrylate and silica networks”, Journal of Non-Crystalline Solids, vol 318 (2003), pp. 149-156. doi:10.1016/S0022-3093(02)01862-8

(19) Fortes-Revilla, C., Blanco-Varela, M.T. y Martínez-Ramírez, S.: “Spectroscopic study of waterproofing on lime mortars”, Journal of Cultural Heritage (in press).

(20) Ameduri, B., Boutevin, B., Moreau, J.J.E., Moutaabbid, H. y Wong Chi Man, M.: “Hybrid organic–inorganic gels containing perfluoro-alkyl moieties”, Journal of Fluorine Chemistry, vol. 104 (2000), pp 185-194.

(21) Schorn, C., Naumann, D., Scherer, H. y Hahn, J.: “Concepts in the NMR structural analysis of perfluoroalkyl groups: characterization of the bis(n-perfluoroalkyl)zinc compounds: Zn(n-CmF2m+1)2·2THF (m = 4, 6, 7, 8) and Zn(n-C6F13)2·2CH3CN”, Journal of Fluorine Chemistry vol. 107 (2001), pp. 159-169. doi:10.1016/S0022-1139(00)00389-4

(22) Církva, V., Améduri, B., Boutevin, B. y Paleta, O.: “Highly selective synthesis of [(perfluoroalkyl) methyl] oxiranes (by the addition of iodoperfluoroalkanes to allyl acetate”, Journal of Fluorine Chemistry, vol 83 (1997), pp. 151-158. doi:10.1016/S0022-1139(97)00018-3

(23) Ma, Q. y Feng, S.: “Synthesis of a new kind of carbohydrate-modified polysiloxanes and its morphological transition of molecular aggregates in water”; Carbohydrate Polymers, vol. 65 (2006), pp. 321-326. doi:10.1016/j.carbpol.2006.01.036

(24) Zhou, C.J., Guan, R.F. y Feng, S.Y.:“The preparation of a new polysiloxane copolymer with glucosylthioureylene groups on the side chains”, European Polymer Journal, vol. 40 (2004), pp. 165-170. doi:10.1016/j.eurpolymj.2003.09.013

(25) Améduri, B., Boutevin, B., Kostov, G.K. y Petrova, P.: “Synthesis and polymerization of fuorinated monomers bearing a reactive lateral group.Part 4. Preparation of functional perfuorovinyl monomers by radical addition of functional mercaptans to 1,1,2-trifuoro-1,4-pentadiene”, Journal of Fluorine Chemistry, 92 (1998), pp. 77-84. doi:10.1016/S0022-1139(98)00250-4

(26) Otazaghine, B., Sauguet, L. y Ameduri, B.: “Synthesis and copolymerisation of fluorinated monomers bearing a reactive lateral group: Part 21. Radical copolymerisation of vinylidene fluoride with 2-hydroperfluorooct-1-ene”, Journal of Fluorine Chemistry, vol. 126 (2005), pp. 1009-1016. doi:10.1016/j.jfluchem.2005.03.006

(27) Folk, R. L.: “Spectral subdivision of limestones types”, Classification of Carbonate Rocks, American Association of Petroleum Geologists Memoir 1, W.E. Ham (editor.), 1962, pp. 62-84

(28) Nwaubani, S.O. y Dumbelton, J.: “A practical approach to in-situ evaluation of surface-treated structures”, Construction and Building materials, vol. 15 (2001), pp. 199-212. doi:10.1016/S0950-0618(01)00003-4

(29) Protectosil Antigraffiti brochure: Surface protection just like Nature's. Permanent, invisible protection against graffiti. http://www.protectosil.com/pub/NR/rdonlyres/7DDF75A5-7CEE-4414-8296-651FB779B9C3/0/Antigraffiti_Esafe.pdf, October 2007.

(30) Carmona Quiroga, P.M., Martínez Ramírez, S., Blanco Varela, M.T. y Fort, R.: “Valuation of the effectiveness of an antigraffiti product applied to "Blanco Paloma" limestone”, Proceedings of the International Conference on Heritage, Weathering and Conservation, Madrid 21-24 junio 2006, vol.2, pp. 785-790. Fort, R. & al. Eds.

Downloads

Published

2008-06-30

How to Cite

Carmona-Quiroga, P. M., Martínez-Ramírez, S., & Blanco-Varela, M. T. (2008). Fluorinated anti-graffiti coating for natural stone. Materiales De Construcción, 58(289-290), 233–246. https://doi.org/10.3989/mc.2008.v58.i289-290.76

Issue

Section

Research Articles

Most read articles by the same author(s)

1 2 3 > >>