PCM choosing and classification according to their characteristics for their application for thermal energy storage systems

Authors

  • A. Oliver Universidad Politécnica de Madrid (UPM)
  • F. J. Neila Universidad Politécnica de Madrid
  • A. García-Santos Universidad Politécnica de Madrid

DOI:

https://doi.org/10.3989/mc.2012.58010

Keywords:

PCM, latent heat, thermal energy, enthalpy, renewable energy

Abstract


Thermal energy storage has been linked to Architecture since ancient times, in large massive buildings through sensible heat. Latent heat storage —through phase change materials (PCMs) is another way of thermal storage, which has aroused great interest in recent decades. These materials, maintain constant temperature during the phase change while the material stores or releases energy. Their energy density storage is higher than any other. Its use is linked to renewable energy to adjust the supply periods to demand. In this paper we study the different phase change materials, classifying them and analyzing their physical, chemical, mechanical, thermal properties; availability, pricing, durability, and their compatibility with other materials. Their uses and most interesting applications are discussed.

Downloads

Download data is not yet available.

References

(1) Hauer, A.: ”Innovative Thermal Energy Storage Systems for Residential Use”. (2002), Bavarian Center for Applied Energy Research, ZAE Bayern, p. 8.

(2) Himran, S., Suwono A.: ”Characterization of Alkanes and Paraffin Waxes for Application as Phase Change Energy Storage Medium”, 16 (1994 9 (Energy Sources), pp. 117-128.

(3) Abhat, A.: “Latent Heat Thermal Energy Storage in the Temperature range 20-80°C”. (1978) (Bericht IKE 5-209).

(4) Abhat, A.: ”Low temperature latent heat thermal energy storage-Heat storage materials”. Solar Energy, 30(4) (1983).

(5) Hasan, A. and Sayigh, A. A.: “Some fatty acids as phase-change thermal energy storage materials”. Renewable energy, 4(1) (1994), pp. 69-76.

(6) Lane, G. A.:”Solar heat storage” Latent heat materials. Volume II. Technology. (1986): CRC Press, Inc., Boca Raton, FL.

(7) Nagano, K. et al.: “Thermal characteristics of manganese (II) nitrate hexahydrate as a phase change material for cooling systems”. Applied Thermal Engineering, 23(2) (2003), pp. 229-241.

(8) Ibáñez, M. et al.: “An approach to the simulation of PCMs in building applications using TRNSYS”. Applied Thermal Engineering, 25(11-12) (2005), pp 1796-1807.

(9) Schroeder, J. and Gawron, K: “Latent heat storage”. International Journal of Energy Research, 5 (1981), pp. 103-109.

(10) Bardon, J. P., Vrignaud, E., Delaunay, D.: “Etude expérimentale de la fusión et de la solidification périodique d’une plaque de paraffine”. Rev. Gén. Therm., Fr (1979), pp. 212-213.

(11) El-Dessouky, H. et al.: “Heat transefer in vertically aligned phase change energy storage systems”. Journal of Solar Energy Engineering, Transactions of the ASME (1999), 121, pp. 98-110. PMid:18643825

(12) Farid, M.: “Solar Energy Storage with phase change”. Energy Res, 4 (1986), pp-11.

(13) Hadjieva, M., Stoykov, R. and Filipova, T: “Composite salt-hydrate concrete system for building energy storage”. Renewable Energy, 19(1-2) (2000), pp. 111-115.

(14) Kemink, R. G.: “Melting of a solid adjacent to a heated vertical cylinder with or without subcooling of the solid” (Ph. D. Thesis) (1981).

(15) Salyer Ival, O. et al.: “Advanced phase-change materials for passive solar storage applications” Final report. (1986), DOE/CE/30755- T1, Dayton Univ., OH (USA). Research Inst.

(16) Samai, M., Jarny, Y. and Delaunay, D.: “An optimization method using an adjoint equation to identify solidification front location”. Numerical Heat Transfer, Part B: Fundamentals, 23(1) (1993), pp. 67-89.

(17) Hawes, D., Feldman, D. and Banu, D.: “Latent heat storage in building materials”. Energy and buildings, 20(1) (1993), pp. 77-86.

(18) Fieback, K., Gutberlet, H., and Buttner, D. C.: “Microwave-activated latent heat accumulator bodies” (1999).

(19) Zalba, B.: “Almacenamiento térmico de energía mediante cambio de fase. Procedimiento experimental”, in Departamento de Ingeniería Mecánica. (2002), Universidad de Zaragoza, Zaragoza.

(20) Kakiuchi, H. et al.: “A study of erythritol as phase change materia”l. IEA Annex (1998), pp. 11-13.

(21) Shukla, A. et al.: “Accelerated thermal cycle test of erythritol for the latent heat storage application”. Proceedings of the EM4 Indore Workshop IEA ECES IA Annex (2003), 17, pp 21-24.

(22) Kenisarin, M. and Mahkamov, K.: “Actual Problems in Using Phase-Change Materials to Store Solar Energy”. NATO Advanced Study Institute Summer School on Thermal Energy Storage for Sustainable Energy Consumption (TESSEC) (2005), pp. 6–17.

(23) Feldman, D., et al.: “Fatty acids and their mixtures as phase-change materials for thermal energy storage”. Solar energy materials, 18(3-4) (1989), pp. 201-216.

(24) Hong, Y. and Xin-shi, G.: “Preparation of Polyethylene-Paraffin Compound as a Form-Stable Solid-Liquid Phase Change Material”, in Solar Energy Materials & Solar Cells (2000), pp. 37-44.

(25) Peippo, K., Kauranen, P., and Lund, P.: “A Multicomponent PCM Wall Optimized for Passive Solar Heating”, in Energy and Building (1991), pp. 259-270.

(26) Cuevas-Diarte, M. A., Haget, Y. and Mondieig, D.: “Nuevos materiales para el almacenamiento de energía térmica: las aleaciones moleculares”. El instalador, Abril (1996), pp. 87-89.

(27) Espeau, P.: “Syncristallisation dans la famile des alcanes de C8H18 a C17H36. Condeption, elaboration et carcterisation de nouveaux materiaux a changement de phases a base d’alliages moleculaires (MACPAM). Application a la proction thermique dans le domaine agroalimentaire” (1995), Burdeos.

(28) Metivaud, V. et al.: “Solid-Solid and Solid-Liquid Equilibria in the Heneicosane-Docosane Binary System”. Chem. Mater, 11(1).

(29) Roblès, L. et al.: “Mise au point sur le comportement énergétique et cristallographique des n-alcanes”. II. Série de C 22 H 46 à C 27 H 56. J. Chim. Phys. 95(1), pp. 92-111 (1998).

(30) Jing, C., Martin, V. and Setterwall, F.: “The study of PCM thermal management solution for portable computer”.Proc. 2nd Workshop IEA ECES IA Annex 17, Advanced Thermal Energy Storage Techniques, pp. 3–5 (2002).

(31) Salyer Ival, O. and Sircar, A. K.: ”Phase change materials for heating and cooling of residential buildings and other applications”. Energy Conversion Engineering Conference, IECEC-90. Proceedings of the 25th Intersociety, 4 (1990).

(32) González, F. et al.: “Phase Change Materials (PCMs) for energy storage in architecture. Use with the Magic Box prototype”. Mater. Construcc. 58(291) (2008), pp. 119-126.

Downloads

Published

2012-03-30

How to Cite

Oliver, A., Neila, F. J., & García-Santos, A. (2012). PCM choosing and classification according to their characteristics for their application for thermal energy storage systems. Materiales De Construcción, 62(305), 131–140. https://doi.org/10.3989/mc.2012.58010

Issue

Section

Technical Note