Effect of different high surface area silicas on the rheology of cement paste

Authors

DOI:

https://doi.org/10.3989/mc.2020.15719

Keywords:

Rheology, Workability, Superficial area, Pozzolan, Cement paste

Abstract


This work studies the effect of nanosilica (NS) on the rheology of cement paste by comparing it with two high specific surface area silicas: silica fume (SF) and pyrogenic silica (PS). Portland cement pastes were produced with different water-to-cementing material ratios and different solid substitutions of cement by silica. Water demand, setting time, and rheology tests were performed. Results showed that NS and SF decreased plastic viscosity, while PS increased it. Only PS was found to have an effect on yield stress. NS showed the most decreasing effect on viscosity, regardless of its higher water demand. It was concluded that the behavior of pastes containing NS and SF is governed by the “ball-bearing” effect from silica particles, by their agglomeration degree, and their impact on the solid volume fraction. The behavior of pastes containing PS is governed by its ability to absorb a portion of the mixing water.

Downloads

Download data is not yet available.

References

Kwan, A.K.H.; Li, Y. (2013) Effects of fly ash microsphere on rheology, adhesiveness and strength of mortar. Constr. Build. Mater. 42, 137-145. https://doi.org/10.1016/j.conbuildmat.2013.01.015

Jal, P.K.; Sudarshan, M.; Saha, A.; Patel, S.; Mishra, B.K. (2004) Synthesis and characterization of nanosilica prepared by precipitation method. Coll. Surf. A Physicochem. Eng. Asp. 240 [1-3], 173-178. https://doi.org/10.1016/j.colsurfa.2004.03.021

El Sokkary, T. M.; Assal, H. H.; Kandeel, A. M. (2004) Effect of silica fume or granulated slag on sulphate attack of ordinary portland and alumina cement blend. Ceram. Int. 30 [2], 133-138. https://doi.org/10.1016/S0272-8842(03)00025-7

Gutsch, A.; Krämer, M.; Michael, G.; Mühlenweg, H.; Pridöhl, M.; Zimmermann, G. (2002) Gas-Phase production of nanoparticles. KONA Powder Part. J. 20, 24-37. https://doi.org/10.14356/kona.2002008

Singh, L.P.; Karade, S.R.; Bhattacharyya, S.K.; Yousuf, M.M.; Ahalawat, S. (2013) Beneficial role of nanosilica in cement based materials - A review. Constr. Build. Mater. 47, 1069-1077. https://doi.org/10.1016/j.conbuildmat.2013.05.052

Björnström, J.; Martinelli, A.; Börjesson, L.; Panas, I.; (2004) Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement. Chem. Phys. Lett. 392 [1-3], 242-248. https://doi.org/10.1016/j.cplett.2004.05.071

Mendoza Reales, O.A.; Silva, E.C.C.M.; Paiva, M.D.M.; M.; Duda, P.; Toledo Filho, R.D. (2017) The role of surface area and compacity of nanoparticles on the rheology of cement paste 25.3. ACI Symp. Pub. 320, 25.1-25.14. https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/51701063.

Tobón, J. I.; Mendoza Reales, O.; Retrepo, O.J.; Borrachero, M.V. (2018) Effect of pyrogenic silica and nanosilica on Portland cement matrices. J. Mater. Civ. Eng. 30 [10], 1-10. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002482

Mehdipour, I.; Khayat, K.H. (2018) Understanding the role of particle packing characteristics in rheo-physical properties of cementitious suspensions: A literature review. Constr. Build. Mater. 161, 340-353. https://doi.org/10.1016/j.conbuildmat.2017.11.147

Boukendakdji, O.; Kadri, E.H.; Kenai, S. (2012) Effects of granulated blast furnace slag and superplasticizer type on the fresh properties and compressive strength of selfcompacting concrete. Cem. Concr. Compos. 34 [4], 583-590. https://doi.org/10.1016/j.cemconcomp.2011.08.013

Park, C.K.; Noh, M.H.; Park, T.H. (2005) Rheological properties of cementitious materials containing mineral admixtures. Cem. Concr. Res. 35 [5], 842-849. https://doi.org/10.1016/j.cemconres.2004.11.002

Deng, H.; Li, H. (2018) Assessment of self-sensing capability of carbon black engineered cementitious composites. Constr. Build. Mater. 173, 1-9. https://doi.org/10.1016/j.conbuildmat.2018.04.031

Mendoza-Reales, O.A.; Arias Jaramillo, Y.P.; Ochoa Botero, J.C.; Delgado, C.A.; Quintero, J.H.; Toledo Filho, R.D. (2018) Influence of MWCNT/surfactant dispersions on the rheology of Portland cement pastes. Cem. Concr. Res. 107, 101-109. https://doi.org/10.1016/j.cemconres.2018.02.020

Quercia, G.; Hüsken, G.; Brouwers, H.J.H. (2012) Water demand of amorphous nano silica and its impact on the workability of cement paste. Cem. Concr. Res. 42 [2], 344-357. https://doi.org/10.1016/j.cemconres.2011.10.008

Norhasri, M.S.M.; Hamidah, M.S.; Fadzil, A.M. (2017) Applications of using nano material in concrete: A review. Constr. Build. Mater. 133, 91-97. https://doi.org/10.1016/j.conbuildmat.2016.12.005

Bowen, P. (2002). Particle size distribution measurement from millimeters to nanometers and from rods to platelets. J. Dispers. Sci. Technol. 23 [5], 631-662. https://doi.org/10.1081/DIS-120015368

Staiger, M.; Bowen, P.; Ketterer, J.; Bohonek, J. (2002) Particle size distribution measurement and assessment of agglomeration of commercial nanosized ceramic particles. J. Dispers. Sci. Technol. 23 [5], 619-630. https://doi.org/10.1081/DIS-120015367

Hidalgo, A.; Petit, S.; Domingo, C.; Alonso, C.; Andrade, C. (2007) Microstructural characterization of leaching effects in cement pastes due to neutralisation of their alkaline nature. Part I: Portland cement pastes. Cem. Concr. Res. 37 [1], 63-70. https://doi.org/10.1016/j.cemconres.2006.10.002

Srinivasan, S.; Barbhuiya, S.A.; Charan, D.; Pandey, S.P. (2010) Characterising cement-superplasticiser interaction using zeta potential measurements. Constr. Build. Mater. 24 [12], 2517-2521. https://doi.org/10.1016/j.conbuildmat.2010.06.005

de Larrard, F. (1999) Concrete mixture proportioning a scientific approach, E. & F.N. Spon, London. https://doi.org/10.1201/9781482272055

Banfill, P.F.G. (2006) Rheology of fresh cement and concrete. Rheol. Reviews 2006. 61-130.

Burneau, A.; Barres, O.; Gallas, J.P.; Lavalley, J.C. (1990) Comparative Study of the Surface Hydroxyl Groups of Fumed and Precipitated Silicas. 2. Chatracterization by infrared spectroscopy of the interacctions with water. Langmuir. 6 [8], 1364-1372. https://doi.org/10.1021/la00098a008

Xie, X-L.; Liu, Q-X.; Li, R.K-Y.; Zhou, X-P.; Zhang, Q-X.; Yu, Z-Z.; Mai, Y-W. (2004) Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization. Polymer. 45 [19], 6665-6673. https://doi.org/10.1016/j.polymer.2004.07.045

Asavapisit, S.; Fowler, G.; Cheeseman, C.R. (1997) Solution chemistry during cement hydration in the presence of metal hydroxide wastes. Cem. Concr. Res. 27 [8], 1249-1260. https://doi.org/10.1016/S0008-8846(97)00109-9

Published

2020-11-04

How to Cite

Tobón, J. I., Mendoza, O., Restrepo, O. J., Borrachero, M. V., & Payá, J. (2020). Effect of different high surface area silicas on the rheology of cement paste. Materiales De Construcción, 70(340), e231. https://doi.org/10.3989/mc.2020.15719

Issue

Section

Research Articles

Most read articles by the same author(s)

1 2 > >>