Application of novel synthesized nanocomposites containing κ-carrageenan/PVA/eggshell in cement mortars

Authors

DOI:

https://doi.org/10.3989/mc.2020.06720

Keywords:

Nanocomposites, Nanoeggshell, κ-carrageenan, PVA, Cement mortar

Abstract


This study is a preliminary attempt to present the preparation and the first time a κ-carrageenan/PVA/eggshell nanostructure is used as a novel biodegradable and homogeneous nanostructure in cement composition. In order to clearly understand the effects these additives have on the mechanical properties of cementitious composites, they were synthesized in double and triple combinations and added into mortar mixtures. Three different cement mortar specimens were prepared by integrating the additives in ratios of 0, 0.1, 0.5 and 1% by cement weight and flexural and compressive strengths of the specimens were determined at the ages of 7 and 28 days. The flowability of the presented nanostructures was also discussed. The results revealed a 10–11% increase in both compressive and flexural strengths for the specimens prepared with the triple combination of the proposed additives. Moreover, strain capacity was enhanced as a result of the efficient dispersion of additives in the cement matrix.

Downloads

Download data is not yet available.

References

Hesami, S.; Ahmadi, S.; Nematzadeh, M. (2014) Effects of rice husk ash and fiber on mechanical properties of pervious concrete pavement. Constr. Build. Mater. 53, 680-691. https://doi.org/10.1016/j.conbuildmat.2013.11.070

Aksoğan, O.; Binici, H.; Ortlek, E. (2016) Durability of concrete made by partial replacement of fine aggregate by colemanite and barite and cement by ashes of corn stalk, wheat straw and sunflower stalk ashes. Constr. Build. Mater. 106, 253-263. https://doi.org/10.1016/j.conbuildmat.2015.12.102

Sada, B.H.; Amartey, Y.D.; Bako, S. (2013) An Investigation into the Use of Groundnut Shell as Fine Aggregate Replacement. Niger. J. Technol. 32, 54-60.

Olanipekun, E.A.; Olusola, K.O.; Ata, O. (2006) A comparative study of concrete properties using coconut shell and palm kernel shell as coarse aggregates. Build. Environ. 41, 297-301. https://doi.org/10.1016/j.buildenv.2005.01.029

Pliya, P.; Cree, D. (2015) Limestone derived eggshell powder as a replacement in Portland cement mortar. Constr. Build. Mater. 95, 1-9. https://doi.org/10.1016/j.conbuildmat.2015.07.103

Mine, Y. (2008) Egg Bioscience and Biotechnology. John Wiley & Sons, Inc. (2008). https://doi.org/10.1002/9780470181249

Rivera, E.M.; Araiza, M.; Brostow, W.; Castaño, V.M.; Díaz-Estrada, J.R.; Hernández, R.; Rodríguez, J.R. (1999) Synthesis of hydroxyapatite from eggshells. Mater. Lett. 41, 128-134. https://doi.org/10.1016/S0167-577X(99)00118-4

Beck, K.; Brunetaud, X.; Mertz, J.D.; Al-Mukhtar, M. (2010) On the use of eggshell lime and tuffeau powder to formulate an appropriate mortar for restoration purposes. Geol. Soc. Spec. Publ. 331, 137-145. https://doi.org/10.1144/SP331.12

Freire, M.N.; Holanda, J.N.F.; (2006) Characterization of avian eggshell waste aiming its use in a ceramic wall tile paste. Cerâmica. 52, 240-244. https://doi.org/10.1590/S0366-69132006000400004

Siqueira, F.B.; Amaral, M.C.; Bou-Issa, R.A.; Holanda, J.N.F. (2016) Influence of industrial solid waste addition on properties of soil-cement bricks. Cerâmica. 62, 237-241. https://doi.org/10.1590/0366-69132016623631969

Sola, O.C.; Atis, C.D. (2012) The effects of pyrite ash on the compressive strength properties of briquettes. KSCE J. Civ. Eng. 16, 1225-1229. https://doi.org/10.1007/s12205-012-1493-9

Shiferaw, N.; Habte, L.; Thenepalli, T.; Ahn, J.W. (2019) Effect of eggshell powder on the hydration of cement paste. Materials. 12, 2483. https://doi.org/10.3390/ma12152483 PMid:31387250 PMCid:PMC6696176

Tiong, H.Y.; Lim, S.K.; Lee, Y.L.; Lim, J.H. (2018) Engineering properties of 1200 kg/m3 lightweight foames concrete with egg shell powder as partial replacement material of cement. E3S Web Conf. 65, 02010. https://doi.org/10.1051/e3sconf/20186502010

Gowsika, D.; Sarankokila, S.; Sargunan, K. (2014) Experimental investigation of egg shell powder as partial replacement with cement in concrete. Int. J. Eng. Trends Technol. 14, 65-68. https://doi.org/10.14445/22315381/IJETT-V14P214

Yerramala, A. (2014) Properties of concrete with eggshell powder as cement replacement. Indian Concr. J. 88, 94-102.

Ujin, F.; Ali, K.S.; Harith, Z.Y.H. (2017) The effect of eggshells ash on the compressive strength of concrete. Key Eng. Mater. 728, 402-407. https://doi.org/10.4028/www.scientific.net/KEM.728.402

Patel, P.S.; Parikh, K.B.; Darji, A.R. (2017) Study on concrete using fly ash, rice husk ash and egg shell powder. Int. J. Res. Appl. Sci. Eng. Technol. 5, 566-570. https://doi.org/10.22214/ijraset.2017.2084

Rahman, A.F.; Goh, W.I.; Mohamad, N.; Kamarudin, M.S.; Jhatial, A.A. (2019) Numerical analysis and experimental validation of reinforced foamed concrete beam containing partial cement replacement. Case Stud. Constr. Mater. 11, e00297. https://doi.org/10.1016/j.cscm.2019.e00297

Zheng, B.; Qian, L.; Yuan, H.; Xiao, D.; Yang, X.; Paau, M.C.; Choi, M.M.F. (2010) Preparation of gold nanoparticles on eggshell membrane and their biosensing application. Talanta. 82, 177-183. https://doi.org/10.1016/j.talanta.2010.04.014 PMid:20685454

Cui, T.-L.; He, J.-Y.; Liu, C.-S. (2020) High electrochemical performance carbon nanofibers with hierarchical structure derived from metal-organic framework with natural eggshell membranes. J. Colloid Interface Sci. 560, 811-816. https://doi.org/10.1016/j.jcis.2019.11.008 PMid:31708260

Khan, S.R.; Jamil, S.; Ali, S.; Khan, S.A.; Mustaqeem, M.; Janjua, M.R.S.A. (2020) Synthesis and structure of calcium-tin hybrid microparticles from eggshell and investigation of their thermal behavior and catalytic application. Chem. Phys. 530, 110613. https://doi.org/10.1016/j.chemphys.2019.110613

Pehlivan, A.O.; Karakuş, S.; Sanrı Karapınar, I.; Özsoy Özbay, A.E.; Yazgan, A.U.; Taşaltın, N.; Kilislioğlu, A. (2020) Effect of novel synthesized nanoeggshell on the properties of cementitious composites. J. Adv. Concr. Technol. 18, 294-306. https://doi.org/10.3151/jact.18.294

Ahmed, E.M. (2015) Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 6, 105-121. https://doi.org/10.1016/j.jare.2013.07.006 PMid:25750745 PMCid:PMC4348459

Warson, H. (2000) Modern superabsorbent polymer technology. Polym. Int. 49, 1548-1548. https://doi.org/10.1002/1097-0126(200011)49:11<1548::AID-PI482>3.0.CO;2-D

Justs, J.; Wyrzykowski, M.; Winnefeld, F.; Bajare, D.; Lura, P. (2014) Influence of superabsorbent polymers on hydration of cement pastes with low water-to-binder ratio: A calorimetry study. J. Therm. Anal. Calorim. 115, 425-432. https://doi.org/10.1007/s10973-013-3359-x

Kantro, D. (1980) Influence of water-reducing admixtures on properties of cement paste-A miniature slump test. Cem. Concr. Aggreg. 2, 95-102. https://doi.org/10.1520/CCA10190J

Pourjavadi, A.; Harzandi, A.M.; Hosseinzadeh, H. (2004) Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Eur. Polym. J. 40, 1363-1370. https://doi.org/10.1016/j.eurpolymj.2004.02.016

Krafcik, M.J.; Erk, K.A. (2016) Characterization of superabsorbent poly (sodium-acrylate acrylamide) hydrogels and influence of chemical structure on internally cured mortar. Mater. Struct. 49, 4765-4778. https://doi.org/10.1617/s11527-016-0823-7

Mitsuiki, M.; Yamamoto, Y.; Mizuno, A.; Motoki, M. (1998) Glass transition properties as a function of water content for various low-moisture galactans. J. Agric. Food Chem. 46, 3528-3534. https://doi.org/10.1021/jf9709820

Scriven, F. (1994) The glassy state in foods. Trends Food Sci. Technol. 5, 176. https://doi.org/10.1016/0924-2244(94)90128-7

Chronakis, I.S.; Piculell, L.; Borgström, J. (1996) Rheology of kappa-carrageenan in mixtures of sodium and cesium iodide: two types of gels. Carbohydr. Polym. 31, 215-225. https://doi.org/10.1016/S0144-8617(96)00117-8

Liu, S.; Li, L. (2016) Thermoreversible gelation and scaling behavior of Ca2+-induced κ-carrageenan hydrogels. Food Hydrocoll. 61, 793-800. https://doi.org/10.1016/j.foodhyd.2016.07.003

Therkelsen, G.H. (1993) Carrageenan. In Industrial Gums: Polysaccharides and Their Derivatives: Third Edition. Elsevier Inc. 145-180. https://doi.org/10.1016/B978-0-08-092654-4.50011-5

Mechtcherine, V.; Gorges, M.; Schroefl, C; Assmann, A.; Brameshuber, W.; Ribeiro, A.B.; Cusson, D.; Custódio, J.; da Silva, E.F.; Ichimiya, K. et al. (2014) Effect of internal curing by using superabsorbent polymers (SAP) on autogenous shrinkage and other properties of a high-performance fine-grained concrete: results of a RILEM round-robin test. Mater. Struct. 47, 541-562. https://doi.org/10.1617/s11527-013-0078-5

Plank, J.; Sachsenhauser, B. (2009) Experimental determination of the effective anionic charge density of polycarboxylate superplasticizers in cement pore solution. Cem. Concr. Res. 39, 1-5. https://doi.org/10.1016/j.cemconres.2008.09.001

Wang, F.; Zhou, Y.; Peng, B.; Liu, Z.; Hu, S. (2009) Autogenous shrinkage of concrete with super-absorbent polymer. ACI Mater. J. 106, 123-127. https://doi.org/10.14359/56458

Campo, V.L.; Kawano, D.F.; da Silva Jr., D.B.; Carvalho, I. (2009) Carrageenans: Biological properties, chemical modifications and structural analysis - A review. Carbohydr. Polym. 77, 167-180. https://doi.org/10.1016/j.carbpol.2009.01.020

Ling, Y.; Zhang, P.; Wang, J.; Chen, Y. (2019) Effect of PVA fiber on mechanical properties of cementitious composite with and without nano-SiO2. Constr. Build. Mater. 229, 117068. https://doi.org/10.1016/j.conbuildmat.2019.117068

Zhang, P.; Li, Q-f.; Wang, J.; Shi, Y.; Ling, Y-f. (2019) Effect of PVA fiber on durability of cementitious composite containing nano-SiO2. Nanotechnol. Rev. 8 [1], 116-127. https://doi.org/10.1515/ntrev-2019-0011

Zhang, P.; Li, Q.; Wang, J.; Shi, Y.; Zheng, Y.; Ling, Y. (2020). Effect of nano-particle on durability of polyvinyl alcohol fiber reinforced cementitious composite. Sci. Adv. Mater. 12 [2], 249-262. https://doi.org/10.1166/sam.2020.3680

Ling, Y.F.; Zhang, P.; Wang, J.; Shi, Y. (2020) Effect of sand size on mechanical performance of cement-based composite containing PVA fibers and nano-SiO2. Materials. 13 [2], 325. https://doi.org/10.3390/ma13020325 PMid:31936792 PMCid:PMC7013822

Tang, M-x.; Zhu, Y-d.; Li, D.; Adhikari, B.; Wang, L-j. (2019) Rheological, thermal and microstructural properties of casein/κ-carrageenan mixed systems. LWT. 113, 108296. https://doi.org/10.1016/j.lwt.2019.108296

Madruga, L.Y.C.; Sabino, R.M.; Santos, E.C.G.; Popat, K.C.; Balaban, R. de C.; Kipper, M.J. (2020) Carboxymethyl-kappa-carrageenan: A study of biocompatibility, antioxidant and antibacterial activities. Int. J. Biol. Macromol. 152, 483-491. https://doi.org/10.1016/j.ijbiomac.2020.02.274 PMid:32109473

Liu, Y.; Zhang, X.; Li, C.; Qin, Y.; Xiao, L.; Liu, J. (2020) Comparison of the structural, physical and functional properties of κ-carrageenan films incorporated with pomegranate flesh and peel extracts. Int. J. Biol. Macromol. 147, 1076-1088. https://doi.org/10.1016/j.ijbiomac.2019.10.075 PMid:31739038

Berton, S.B.R.; de Jesus, G.A.M.; Sabino, R.M.; Monteiro, J.P.; Venter, S.A.S.; Bruschi, M.L.; Popat, K.C.; Matsushita, M.; Martin, A.F.; Bonafé, E.G. (2020) Properties of a commercial κ-carrageenan food ingredient and its durable superabsorbent hydrogels. Carbohydr. Res. 487, 107883. https://doi.org/10.1016/j.carres.2019.107883 PMid:31809910

Azizi, S.; Mohamad, R.; Rahim, R.A.; Mohammadinejad, R.; Ariff, A.B. (2017) Hydrogel beads bio-nanocomposite based on Kappa-Carrageenan and green synthesized silver nanoparticles for biomedical applications. Int. J. Biol. Macromol. 104, 423-431. https://doi.org/10.1016/j.ijbiomac.2017.06.010 PMid:28591593

Campanella, L.; Favero, G.; Persi, L.; Tomassetti, M. (2000) New biosensor for superoxide radical used to evidence molecules of biomedical and pharmaceutical interest having radical scavenging properties. J. Pharmac. Biomed. Anal. 23, 69-76. https://doi.org/10.1016/S0731-7085(00)00276-4

Spagnuolo, P.A.; Dalgleis, D.G.; Goff, H.D.; Morris, E.R. (2005) Kappa-carrageenan interactions in systems containing casein micelles and polysaccharide stabilizers. Food Hydrocoll. 19, 371-377. https://doi.org/10.1016/j.foodhyd.2004.10.003

Aday, A.N.; Osio-Norgaard, J.; Foster, K.E.O.; Srubar III, W.V. (2018) Carrageenan-based superabsorbent biopolymers mitigate autogenous shrinkage in ordinary portland cement. Mater. Struct. 51, 37. https://doi.org/10.1617/s11527-018-1164-5

Mahdavinia, G.R.; Massoudi, A.; Baghban, A.; Shokri, E. (2014) Study of adsorption of cationic dye on magnetic kappa-carrageenan/PVA nanocomposite hydrogels. J. Environ. Chem. Eng. 2, 1578-1587. https://doi.org/10.1016/j.jece.2014.05.020

Hezaveh, H.; Muhamad, I.I. (2013) Controlled drug release via minimization of burst release in pH-response kappa-carrageenan/polyvinyl alcohol hydrogels. Chem. Eng. Res. Des. 91, 508-519. https://doi.org/10.1016/j.cherd.2012.08.014

Esmaeili, C.; Heng, L.Y.; Ling, Y.P.; Norouzi, P.; Ling, T.L. (2017) Potentiometric urea biosensor based on immobilization of urease in Kappa-Carrageenan biopolymer. Sens. Lett. 15, 851-857. https://doi.org/10.1166/sl.2017.3882

Li, J.-X.; Liu, D.; Qin, Z.-B.; Dong, G.-Y. (2019) Sonochemical synthesis of two nano-sized nickel(II) coordination polymers derived from flexible bis(benzimidazole) and isophthalic acid ligands. Polyhedron. 160, 92-100. https://doi.org/10.1016/j.poly.2018.12.029

Xu, H.; Zeiger, B.W.; Suslick K.S. (2013) Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 42, 2555-2567. https://doi.org/10.1039/C2CS35282F PMid:23165883

Tan, E.; Karakus, S.; Soylu, G.S.P.; Birer, Ö.; Zengin, Y.; Kilislioglu, A. (2017) Formation and distribution of ZnO nanoparticles and its effect on E. coli in the presence of sepiolite and silica within the chitosan matrix via sonochemistry. Ultrason. Sonochem. 38, 720-725. https://doi.org/10.1016/j.ultsonch.2016.08.027 PMid:27614583

Karakuş, S. (2019) Preparation and rheological characterization of Chitosan-Gelatine@ZnO-Si nanoparticles. Int. J. Biol. Macromol. 137, 821-828. https://doi.org/10.1016/j.ijbiomac.2019.06.231 PMid:31265850

Karakus, S.; Ilgar, M.; Kahyaoglu, I.M.; Kilislioglu, A. (2019) Influence of ultrasound irradiation on the intrinsic viscosity of guar gum-PEG/rosin glycerol ester nanoparticles. Int. J. Biol. Macromol. 141, 1118-1127. https://doi.org/10.1016/j.ijbiomac.2019.08.254 PMid:31476393

Nagvenkar, A.P.; Deokar, A.; Perelshtein, I.; Gedanken, A. (2016) A one-step sonochemical synthesis of stable ZnO-PVA nanocolloid as a potential biocidal agent. J. Mater. Chem. B. 4, 2124-2132. https://doi.org/10.1039/C6TB00033A PMid:32263179

Wu, Y.D.; Wang, L.S.; Xiao, M.W.; Huang, X.J. (2008) A novel sonochemical synthesis and nanostructured assembly of polyvinylpyrrolidone-capped CdS colloidal nanoparticles. J. Non. Cryst. Solids. 354, 2993-3000. https://doi.org/10.1016/j.jnoncrysol.2007.12.005

Theerdhala, S.; Bahadur, D.; Vitta, S.; Perkas, N.; Zhong, Z.; Gedanken, A. (2010) Sonochemical stabilization of ultrafine colloidal biocompatible magnetite nanoparticles using amino acid, L-arginine, for possible bio applications. Ultrason. Sonochem. 17, 730-737. https://doi.org/10.1016/j.ultsonch.2009.12.007 PMid:20042358

Darroudi, M.; Zak, A.K.; Muhamad, M.R.; Huang, N.M.; Hakimi, M. (2012) Green synthesis of colloidal silver nanoparticles by sonochemical method. Mater. Lett. 66, 117-120. https://doi.org/10.1016/j.matlet.2011.08.016

Nagvenkar, A.P.; Perelshtein, I.; Piunno, Y.; Mantecca, P.; Gedanken, A. (2019) Sonochemical one-step synthesis of polymer-capped metal oxide nanocolloids: antibacterial activity and cytotoxicity. ACS Omega. 4, 13631-13639. https://doi.org/10.1021/acsomega.9b00181 PMid:31497680 PMCid:PMC6713988

TSE (2010) TS EN 12390-6 - Testing hardened concrete - Part 6: Tensile splitting strength for test specimens, Ankara.

ASTM (2013) C1437 - Standard test method for flow of hydraulic cement mortar.

TSE (2010) TS EN 12390-7 - Testing hardened concrete - Part 7: Density of hardened concrete, Ankara.

TSE (2009) TS EN 196-1 - Methods of testing cement - Part 1: Determination of strength Ankara.

Tonelli, F.; Masuelli, M.A. (2019) Acacia caven gum studies of hydrodynamic parameters. Evolut. Polym. Technol. J. Res. Art. 2, 1-11. https://doi.org/10.3390/colloids2040045

Cherif, E. (2019) A new correlation of viscosity and conductivity for the polyelectrolyte solutions of poly(sodium styrene sulphonate) (PSSNa) in N,N-dimethylformamide + water. Phys. Chem. Liq. https://doi.org/10.1080/00319104.2019.1706177

Boulet, M.; Britten, M.; Lamarche, F. (1998) Voluminosity of some food proteins in aqueous dispersions at various pH and ionic strengths. Food Hydrocoll. 12 [4], 433-441. https://doi.org/10.1016/S0268-005X(98)00009-5

Joseph, R.; Devi, S.; Rakshit, A.K. (1991) Viscosity behaviour of acrylonitrile-acrylate copolymer solutions in dimethyl formamide. Polym. Int. 26 [2], 89-92. https://doi.org/10.1002/pi.4990260206

Khemthong, P.; Luadthong, C.; Nualpaeng, W.; Changsuwan, P.; Tongprem, P.; Viriya-Empikul, N.; Faungnawakij, K. (2012) Industrial eggshell wastes as the heterogeneous catalysts for microwave-assisted biodiesel production. Catal. Today. 190, 112-116. https://doi.org/10.1016/j.cattod.2011.12.024

Vichaphund, S.; Kitiwan, M.; Atong, D.; Thavorniti, P. (2011) Microwave synthesis of wollastonite powder from eggshells. J. Eur. Ceram. Soc. 31, 2435-2440. https://doi.org/10.1016/j.jeurceramsoc.2011.02.026

Polat, S.; Sayan, P. (2020) Ultrasonic-assisted eggshell extract-mediated polymorphic transformation of calcium carbonate. Ultrason. Sonochem. 66, 105093. https://doi.org/10.1016/j.ultsonch.2020.105093 PMid:32244088

Hassan, T.A.; Rangari, V.K.; Rana, R.K.; Jeelani, S. (2013) Sonochemical effect on size reduction of CaCO3 nanoparticles derived from waste eggshells. Ultrason. Sonochem. 20, 1308-1315. https://doi.org/10.1016/j.ultsonch.2013.01.016 PMid:23473569

Tizo, M.S.; Blanco, L.A.V.; Cagas, A.C.Q.; Dela Cruz, B.R.B.; Encoy, J.C.; Gunting, J. V.; Arazo, R.O.; Mabayo, V.I.F. (2018) Efficiency of calcium carbonate from eggshells as an adsorbent for cadmium removal in aqueous solution. Sustain. Environ. Res. 28, 326-332. https://doi.org/10.1016/j.serj.2018.09.002

Choudhary, R.; Koppala, S.; Swamiappan, S. (2015) Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol-gel combustion synthesis. J. Asian Ceram. Soc. 3, 173-177. https://doi.org/10.1016/j.jascer.2015.01.002

Jachimska, B.; Adamczyk, Z. (2007) Characterization of rheological properties of colloidal zirconia. J. Eur. Ceram. Soc. 27, 2209-2215. https://doi.org/10.1016/j.jeurceramsoc.2006.07.013

Di Giuseppe, E.; Davaille, A.; Mittelstaedt, E.; François, M. (2012) Rheological and mechanical properties of silica colloids: from Newtonian liquid to brittle behaviour. Rheol. Acta. 51, 451-465. https://doi.org/10.1007/s00397-011-0611-9

van der Werff, J.C.; de Kruif, C.G. (1989) Hard-sphere colloidal dispersions: the scaling of rheological properties with particle size, volume fraction, and shear rate. J. Rheol. 33, 421-454. https://doi.org/10.1122/1.550062

Çiftçi, D.; Kahyaoglu,T.; Kapucu, S.; Kaya, S. (2008) Colloidal stability and rheological properties of sesame paste. J. Food Eng. 87, 428-435. https://doi.org/10.1016/j.jfoodeng.2007.12.026

Karakus, S.; Ilgar, M.; Tan, E.; Müge Sahin, Y.; Tasaltin, N.; Kilislioglu, A. (2020) The viscosity behaviour of PEGylated locust bean gum/rosin ester polymeric nanoparticles. Colloid Sci. Pharmac. Nanotech. IntechOpen. https://doi.org/10.5772/intechopen.90248

Asadi, A.; Pourfattah, F.; Miklós Szilágyi, I.; Afrand, M.; Żyła, G.; Seon Ahn, H.; Wongwises, S.; Minh Nguyen, H.; Arabkoohsar, A.; Mahian, O. (2019) Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: A comprehensive review. Ultrason. Sonochem. 58, 104701. https://doi.org/10.1016/j.ultsonch.2019.104701 PMid:31450312

Shadlou, S.; Wegner, L.D. (2016) Atomistic investigation of the effect of nano-structural shape on the mechanical response of SiC/Cu interpenetrating phase nanocomposites. Comput. Mater. Sci. 117, 428-436. https://doi.org/10.1016/j.commatsci.2016.02.023

Arno, M.C.; Inam, M.; Weems, A.C.; Li, Z.; Binch, A.L.A.; Platt, C.I.; Richardson, S.M.; Hoyland, J.A., Dove, A.P.; O'Reilly, R.K. (2020) Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties. Nat. Commun. 11, 1420. https://doi.org/10.1038/s41467-020-15206-y PMid:32184392 PMCid:PMC7078206

Amani, M.; Khorasani, M.H.M.; Ghamary, M.H. (2016) Effect of salinity on the viscosity of water based drilling fluids at elevated pressures and temperatures. Hamad bin Khalifa Univ. Press. 2016, EEPP2318. https://doi.org/10.5339/qfarc.2016.EEPP2318

Allahverdi, A.; Kianpur K.; Moghbeli, M.R. (2010) Effect of polyvinyl alcohol on flexural strength and some important physical properties of Portland cement paste. Iran. J. Mater. Sci. Eng. 7 [1], 1-6.

Kim, J.-H.; Robertson, R.E. (1998) Effects of polyvinyl alcohol on aggregate-paste bond strength and the interfacial transition zone. Adv. Cem. Based Mater. 8 [2], 66-76. https://doi.org/10.1016/S1065-7355(98)00009-1

Knapen, E.; Van Gemert, D. (2006) Water-soluble polymers for modification of cement mortars. Int. Symp. Polym. Concr. Guimarães, Portugal, 85-93.

Gong, K.; Pan, Z.; Korayem, A. H.; Qiu, L.; Li, D.; Collins, F.; Wang, C. M.; Duan, W. H. (2015). Reinforcing effects of graphene oxide on Portland cement paste. J. Mater. Civil Engineer. 27 [2], 1-6. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001125

Published

2020-11-04

How to Cite

Sanrı-Karapınar, I., Pehlivan, A. O., Karakuş, S., Özsoy-Özbay, A. E., Yazgan, A. U., Taşaltın, N., & Kilislioğlu, A. (2020). Application of novel synthesized nanocomposites containing κ-carrageenan/PVA/eggshell in cement mortars. Materiales De Construcción, 70(340), e235. https://doi.org/10.3989/mc.2020.06720

Issue

Section

Research Articles