Magnetic variation in construction steels under tensile stress. Empirical research with Helmholtz coils

Authors

DOI:

https://doi.org/10.3989/mc.2021.06020

Keywords:

Magnetical properties, Steel, Tensile Strength, Permeability

Abstract


Steel is responsible for providing resistance to flexotraction to reinforced concrete structures. Steel is responsible for providing reinforced concrete structures with a flexural strength. For this reason, it is important to study its behaviour under different tensile states. This study used measuring equipment that was able to determine variations in magnetic properties of B500-SD steel bars during standard tensile tests. The magnetic field generated by a Helmholtz coil was collected through a secondary circuit. This enables the induced electromotive force to relate with the steel deflection stages when subjected to the tests. Moreover, it was possible to determine the variation of magnetic permeability when submitting 12mm and 16mm diameter bars to different tensile states. This method could prove extremely useful in determining the tensile state of ribbed steel bars that are embedded into the concrete structure.

Downloads

Download data is not yet available.

References

Senobua, A. J.; Garzón, E.; Ayuso, J.; Perez, F.; Caballero, A. (2003) Characterizing of steel used in the construction of civil works in Almeria. Rev. Metal. 39, 461-468. ISSN: 1988-4222. https://doi.org/10.3989/revmetalm.2003.v39.i6.360

Wu, W.; Yin, H.; Zhang, H.; Kang, J.; Li, Y.; Dan, Y. (2018) Electrochemical investigation of corrosion of X80 steel under elastic and plastic tensile stress in CO2 environment. Metals. 8 [11], 949. https://doi.org/10.3390/met8110949

Watarai, H.; Fan, R.; Yang Liu, J.; Djauhari, J. (2018) Falling velocity magnetometry of ferromagnetic microparticles. J. Magn. Magn. Mater. 462, 22-28. https://doi.org/10.1016/j.jmmm.2018.04.045

Bao, S.; Fu, M.; Lou, H.; Bai, S. (2017) Defect identification in ferromagnetic steel based on residual magnetic field measurements. J. Magn. Magn. Mater. 441, 590-597. https://doi.org/10.1016/j.jmmm.2017.06.056

Wang, G.; Wang, X.; Liao, Y. (2019) Theoretical investigation on the ferromagnetic two-dimensional scandium monochloride sheet that has a high Curie temperature. Appl. Surf. Sci. 471, 1011-1016. https://doi.org/10.1016/j.apsusc.2018.12.109

Deng, D.; Wu, X. (2018) Feasibility study of determining axial stress in ferromagnetic bars using reciprocal amplitude of initial differential susceptibility obtained from static magnetization by permanent magnets. J. Magn. Magn. Mater. 449, 243-256. https://doi.org/10.1016/j.jmmm.2017.10.039

Petković Dejan, M.; Radić Milica, D. (2015) Generalization of Helmholtz Coil Problem. Serbian J. Electr. Engineer. 12 [3], 375-384. https://doi.org/10.2298/SJEE1503375P

Rubel Basar, Md.; Yazed Ahmad, M.; Cho, J.; Ibrahim, F. (2016) An improved resonant wireless power transfer system with optimum coil configuration for capsule endoscopy. Sen. Actuat. A: Phys. 249, 207-216. https://doi.org/10.1016/j.sna.2016.08.035

Fano, W. G.; Alonso, R.; Quintana, G. (2017) El campo magnético generado por las bobinas de Helmholtz y sus aplicaciones a calibración de sondas. Elektron. 1 [2], 91-96. https://doi.org/10.37537/rev.elektron.1.2.25.2017

Clayton, R.P. (2005) Introduction to electromagnetic compatibility (EMC), Second Edition. Hoboken, N. J. Wiley-Interscience, New Jersey, (2006).

Deng, D.; Wu, X. (2018) Feasibility study of determining axial stress in ferromagnetic bars using reciprocal amplitude of initial differential susceptibility obtained from static magnetization by permanent magnets. J. Magn. Magn. Mater. 449, 243-256. https://doi.org/10.1016/j.jmmm.2017.10.039

Shi, Y.; Zhang, C.; Li, R.; Cai, M.; Jia, G. (2015) Theory and application of magnetic flux leakage pipeline detection. Sensors. 15 [12], 31036-31055. https://doi.org/10.3390/s151229845 PMid:26690435 PMCid:PMC4721765

Ge, J.; Li, W.; Chen, G.; Yin, X.; Yuan, X.; Yang, W.; Liu, J.; Chen Y. (2017) Multiple type defect detection in pipe by Helmholtz electromagnetic array probe. NDT E Int. 91, 97-107. https://doi.org/10.1016/j.ndteint.2017.07.001

Suresh, V.; Abudhahir, A.; Daniel, J. (2017) Development of magnetic flux leakage measuring system for detection of defect in small diameter steam generator tube. Measurem. 95, 273-279. https://doi.org/10.1016/j.measurement.2016.10.015

Ramírez Fernández, P. (2015) Cinética de dominios de sistemas magnéticos. Aplicación al desarrollo de sensores magnéticos. Universidad Politécnica de Madrid, Tesis Doctoral.

Xiucheng, L.; Donghang, W.; Cunfu, H.; Huan, F.; Bin, W. (2018) Comparison of AC and pulsed magnetization-based elasto-magnetic methods for tensile force measurement in steel strand. Measurem. 117, 410-418. https://doi.org/10.1016/j.measurement.2017.12.033

Xiucheng, L.; Wanli, S.; Cunfu, H.; Ruihuan, Z.; Bin, W. (2018) Simultaneous quantitative prediction of tensile stress, surface hardness and case depth in medium carbon steel rods based on multifunctional magnetic testing techniques. Measurem. 128, 455-463. https://doi.org/10.1016/j.measurement.2018.04.044

Thring, C.B.; Fan, Y.; Edwards, R.S. (2016) Focused Rayleigh wave EMAT for characterisation of surfacebreaking defects. NDT E Int. 81, 20-27. https://doi.org/10.1016/j.ndteint.2016.03.002

Ashigwuike, E.C.; Ushie, O.J.; Mackay, R.; Balachandran, W. (2015) A study of the transduction mechanisms of electromagnetic acoustic transducers (EMATs) on pipe steel materials. Sen. Actuat. A: Phys. 229, 154-165. https://doi.org/10.1016/j.sna.2015.03.034

Xu, J.; Xiong, H.; Wu, X. (2011) Signal processing for the guided wave test based on the empirical mode decomposition. International Conference on Electrical and Control Engineering, 1233-1240. https://doi.org/10.1109/ICECENG.2011.6057057

Reitz, J. R.; Milford, F. J. (2001) Fundamentos de la teoría electromagnética. Editorial Alhambra, S. A. Madrid (2001).

UNE-EN ISO 6892-1:2017. (2017) Materiales metálicos. Ensayo de tracción. Parte 1: Método de ensayo a temperatura ambiente. AENOR (2017).

Suárez Guerra, F. (2013). Estudio de la rotura en barras de acero: aspectos experimentales y numéricos. Tesis Doctoral, E.T.S.I. Caminos, Canales y Puertos (UPM).

Ulaby, F. T.; Ravaioli, U. (2017) Fundamentals of Applied Electromagnetics (7th Edition). Pearson, Londres (2017).

Zhu, Z.; Sun, G.; He, C.; Liu, A. (2018) Prediction of the tensile force applied on surface-hardened steel rods based on a CDIF and PSO-optimized neural network. Meas. Sci. Technol. 29 [11], 115602. https://doi.org/10.1088/1361-6501/aadebf

Kvasnica, B.; Fabo, P. (1996) Highly precise non-contact instrumentation for magnetic measurement of mechanical stress in low-carbon steel wires. Meas. Sci. Technol. 7, 763-767. https://doi.org/10.1088/0957-0233/7/5/007

William D.; Callister, Jr. (2012) Materials Science and Engineering. An Introduction. Third Edition. Editorial Reverte, vol. 2. Barcelona (2012).

Lorenzo, L. (2017) Ciencia de Materiales. Servicio de Publicaciones, Escuela Técnica Superior de Ingeniería y Diseño Industrial, Departamento de mecánica industrial. Universidad Politécnica de Madrid (2017).

Reina, M. (2012) Soldadura de los aceros y aplicaciones. Editorial Weldwork, S. L. 5ª Edición, Madrid (2012).

Published

2021-03-17

How to Cite

Ferrández, D. ., Morón, C. ., Saiz, P. ., & Morón, A. . (2021). Magnetic variation in construction steels under tensile stress. Empirical research with Helmholtz coils. Materiales De Construcción, 71(341), e243. https://doi.org/10.3989/mc.2021.06020

Issue

Section

Research Articles