Durability and compressive strength of blast furnace slag-based cement grout for special geotechnical applications

Authors

  • J. M. Ortega Universidad de Alicante
  • J. L. Pastor Universidad de Alicante - Consulteco, S.L.
  • A. Albaladejo Universidad de Alicante
  • I. Sánchez Universidad de Alicante
  • M. A. Climent Universidad de Alicante

DOI:

https://doi.org/10.3989/mc.2014.04912

Keywords:

Ground granulated blast-furnace slag, Cement grout, Special geotechnical applications, Durability, Compressive strength

Abstract


Special foundations, most prominently micropiles and soil anchors, are frequently used in construction today. In Spain, the grout for these special technical applications is generally prepared with portland cement, although the codes and standards in place stipulate only the minimum compressive strength required, with no mention of cement type. Those texts also establish a range of acceptable water:cement ratios. In the present study, durability and compressive strength in cement grout prepared with blast furnace slag cement at different w/c ratios are characterised and compared to the findings for a reference portland cement grout. The results show that slag grout exhibits greater durability than the portland cement material and complies with the compressive strength requirements laid down in the respective codes.

Downloads

Download data is not yet available.

References

1. Armour, T.; Groneck, P.; Keeley, J.; Sharma, S. (2000) Micropile design and construction guidelines – Implementation manual report FHWA-SA-97-070, Federal Highway Administration – US Department of Transportation, Vancouver.

2. Dirección General de Carreteras (2005) Guía para el proyecto y la ejecución de micropilotes en obras de carretera, Ministerio de Fomento, Madrid.

3. Asociación Española de Normalización y Certificación (2006) Ejecución de trabajos geotécnicos especiales. Micropilotes. Norma UNE-EN 14199, Madrid.

4. Dirección General de Carreteras (2001) Guía para el dise-o y la ejecución de anclajes al terreno en obras de carretera, Ministerio de Fomento, Madrid.

5. Asociación Española de Normalización y Certificación (2001)Ejecución de trabajos geotécnicos especiales. Anclajes. Norma UNE-EN 1537, Madrid.

6. Bijen, J. (1996) Benefits of slag and fly ash, Constr. Build. Mater. 10 [5], 309–314. http://dx.doi.org/10.1016/0950-0618(95)00014-3

7. Geiseler, J.; Kollo, H.; Lang, E. (1995) Influence of blast furnace cements on durability of concrete structures, ACI Mat. J. 92 [3], 252–257

8. Bouikni, A.; Swamy, R.N.; Bali, A. (2009) Durability properties of concrete containing 50% and 65% slag, Constr. Build. Mater. 23 [8], 2836–2845. http://dx.doi.org/10.1016/j.conbuildmat.2009.02.040

9. Wiebenga, J.G. (1980) Durability of concrete structures along the North Sea coasts of the Netherlands, ACI Publications Sp-65, 437–452.

10. Jau, W.C.; Tsay, D.S. (1988) A study of the basic engineering properties of slag cement concrete and its resistance to seawater corrosion, Cem. Concr. Res. 28 [10], 1363–1371. http://dx.doi.org/10.1016/S0008-8846(98)00117-3

11. Thomas, M.D.A.; Scott, A.; Bremmer, T.; Bilodeau, A.; Day, D. (2008) Performance of slag concrete in marine environment, ACI Mat. J. 105 [6], 628–634.

12. Manmohan, D.; Mehta, P.K. (1981) Influence of pozzolanic, slag and chemical admixtures on pore size distribution and permeability of hardened cement pastes, Cem.Concr.Aggr. 3 [3], 63–67.

13. Baroghel-Bouny, V. (2007) Water vapour sorption experiments on hardened cementitious materials: Part I: Essential tool for analysis of Hygral behaviour and its relation to pore structure, Cem. Concr. Res. 37 [3], 414–437. http://dx.doi.org/10.1016/j.cemconres.2006.11.019

14. Sánchez, I.; López, M.P.; Climent, M.A. (2007) Effect of fly ash on chloride transport through concrete: Study by impedance spectroscopy, en: Beaudoin, J.J., Makar, J.M., Raki, L. (eds.) Durability and Degradation of Cement Systems: Corrosion and Chloride Transport; T4.04-4. Proc 12th International Congress on the Chemistry of Cement, National Research Council of Canada, Montreal.

15. Leng, F.; Feng, N.; Lu, X. (2000) An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete, Cem. Concr. Res. 30 [6] 989–992. http://dx.doi.org/10.1016/S0008-8846(00)00250-7

16. Asociación Española de Normalización y Certificación (2000) Cemento. Parte 1: Composición, especificaciones y criterios de conformidad de los cementos comunes. Norma UNE-EN 197-1, Madrid.

17. Asociación Española de Normalización y Certificación (2005) Cemento. Parte 3: Determinación del tiempo de fraguado y de la estabilidad de volumen. Norma UNE-EN 196-3, Madrid.

18. Asociación Española de Normalización y Certificación (2005) Métodos de ensayo de cementos. Parte 1: Determinación de resistencias mecánicas. Norma UNE-EN 196-1, Madrid.

19. Asociación Española de Normalización y Certificación (2001) Ensayos de hormigón endurecido. Parte 2: Fabricación y curado de probetas para ensayos de resistencia. Norma UNE-EN 12390-2, Madrid.

20. Polder, R.; Andrade, C.; Elsener, B.; Vennesland, O.; Gulikers, J.; Weidert, R.; Raupach, M. (2000) Rilem TC 154-EMC: Electrochemical techniques for measuring metallic corrosion - Test methods for on site measurement of resistivity of concrete. Mater. Struct. 33 [234], 603–611. http://dx.doi.org/10.1007/BF02480599

21. Asociación Espa-ola de Normalización y Certificación (2008) Durabilidad del hormigón. Métodos de ensayo. Determinación de la resistividad eléctrica. Parte 2: Método de las cuatro puntas o de Wenner. Norma UNE 83988-2, Madrid.

22. Lübeck, A.; Gastaldini, A.L.G.; Barin, D.S.; Siqueira, H.C. (2012) Compressive strength and electrical properties of concrete with white Portland cement and blast-furnace slag, Cem. Concr. Comp. 34 [3], 392–399. http://dx.doi.org/10.1016/j.cemconcomp.2011.11.017

23. American Society for Testing Materials (ASTM) (1990) ASTM Standard C642-90: Standard test method for specific gravity, absorption, and voids in hardened concrete, Philadelphia.

24. Asociación Espa-ola de Normalización y Certificación (2008) Durabilidad del hormigón. Métodos de ensayo. Determinación de la absorción de agua por capilaridad del hormigón endurecido. Método Fagerlund. Norma UNE 83982, Madrid.

25. Rilem (1999) Rilem recommendation TC 116-PCD: Permeability of Concrete as a Criterion of its Durability.Mater. Struct. 32 [217], 174–179.

26. Asociación Espa-ola de Normalización y Certificación (2008) Durabilidad del hormigón. Acondicionamiento de muestras de hormigón para los ensayos de permeabilidad a gases y capilaridad. Norma UNE 83966, Madrid.

27. Punkki, J.; Sellevold, E.J. (1994) Capillary suction in concrete: Effects of drying procedure, Nordic Concrete Research Publication 15, [2/94].

28. Ortega, J.M.; Sánchez, I.; Climent, M.A. (2013) Influence of different curing conditions on the pore structure and the early age properties of mortars with fly ash and blast-furnace slag. Mater. Construcc. 63 [310], 219–234.

29. Asociación Española de Normalización y Certificación (2009) Ensayos de hormigón endurecido. Parte 8: Profundidad de penetración de agua bajo presión. Norma UNE-EN 12390-8, Madrid.

30. Comisión Permanente del Hormigón (2008) Instrucción de Hormigón Estructural EHE-08, Ministerio de Fomento, Madrid.

31. Andrade, C.; Alonso, C.; Arteaga, A.; Tanner, P. (2000) Methodology based on the electrical resistivity for the calculation of reinforcement service life, en: Malhotra, V.M. (ed.) Proc. 5th CANMET/ACI International Conference on Durability of Concrete, Supplementary papers, 899–915, American Concrete Institute, Barcelona.

32. Asociación Espa-ola de Normalización y Certificación (2003) Ensayos de hormigón endurecido. Parte 3: Determinación de la resistencia a compresión de probetas. Norma UNE-EN 12390-3, Madrid.

33. Osterminski, K.; Polder, R.B.; Schießl, P. (2008) Long term behaviour of the resistivity of concrete, Heron 53 [1], 59–78.

34. Çakir, Ö.; Aköz, F. (2008) Effect of curing conditions on the mortars with and without GGBFS, Constr. Build. Mater. 22 [3], 308–314. http://dx.doi.org/10.1016/j.conbuildmat.2006.08.013

35. Neville, A.M. (1995) Properties of concrete, Pearson Education Limited, Harlow.

36. Kanna, V.; Olson, R.A.; Jennings, H.M. (1998) Eff ect of shrinkage and moisture content on the physical characteristics of blended cement mortars, Cem. Concr. Res. 28 [10], 1467–1477. http://dx.doi.org/10.1016/S0008-8846(98)00120-3

37. Chern, J.C.; Chan, Y.W. (1989) Effect of temperature and humidity conditions on the strength of blast furnace slag cement concrete, ACI Sp Publication, [114-67], 1377–1397.

38. Bao-Guo, M.A.; Xiao-Dong, W.; Ming-Yuan, W.; Jia-Jia, Y., Xiao-Jian, G. (2007) Drying shrinkage of cement-based materials under conditions of constant temperature and varying humidity, Journal of China University of Mining and Technology 17 [3], 428–431. http://dx.doi.org/10.1016/S1006-1266(07)60119-9

Published

2014-03-30

How to Cite

Ortega, J. M., Pastor, J. L., Albaladejo, A., Sánchez, I., & Climent, M. A. (2014). Durability and compressive strength of blast furnace slag-based cement grout for special geotechnical applications. Materiales De Construcción, 64(313), e003. https://doi.org/10.3989/mc.2014.04912

Issue

Section

Research Articles