Effect of the aggregate grading on the concrete air permeability

Authors

  • C. Argiz Instituto de Ciencias de la Construcción Eduardo Torroja IETcc–CSIC (Madrid); Universidad Politécnica de Madrid UPM (Madrid)
  • M. A. Sanjuán Instituto Español del Cemento y sus Aplicaciones -IECA (Madrid)
  • R. Muñoz-Martialay Instituto de Ciencias de la Construcción Eduardo Torroja IETcc–CSIC (Madrid)

DOI:

https://doi.org/10.3989/mc.2014.07213

Keywords:

Air Permeability, Aggregate grading, Concrete durability

Abstract


Great durability problems are being found in concrete structures related to the penetrability of aggressive agents through the concrete (ie. chloride penetration, sulphate attack, carbonation, freezing and thawing, and so on). Air permeability coefficient is used as an effective tool to estimate the potential durability of concrete structures due to its direct relation with the microstructure and the moisture content. This paper discusses the effect of the aggregate grading and water/cement ratio on the air permeability coefficient. An aggregate grading with more sand than coarse aggregates has resulted more beneficial from the point of view of concrete air permeability. This fact can be attributed to a denser skeleton formed by the finer aggregates. With fine aggregates, the higher water/cement ratio, the lower air permeability. However, the contrary was found with coarse aggregates. Overall, a temperature increase from 20 °C to 60 °C during preconditioning led to a Dair increase of 40–80%.

Downloads

Download data is not yet available.

References

Hall, C. (1989) Water sorptivity of mortars and concretes: a review. Mag. Concr. Res. 41 [147], 51–61. http://dx.doi.org/10.1680/macr.1989.41.147.51

Pihlajavaara, S.E.; Paroll, H. (1975) On the Correlation between Permeability Properties and Strength of Concrete. Cem. Concr. Res. 5 [4], 321–328. http://dx.doi.org/10.1016/0008-8846(75)90088-5

Soongswang, P.; Tia, M.; Bloomquist, D. (1991) Factors affecting the strength and permeability of concrete made with porous limestone. ACI Mat. J. 88 [4], 400–406.

Samaha, H.R.; Hover, K.C. (1992) Influence of microcracking on the mass transport properties of concrete". ACI Mat. J. 89 [4], 416–424.

Mills, R.H. (1987) Gas and Water Permeability of Concrete for reactor Building – Small Specimens. Research Report. INFO-0188-1, Atomic Energy Control Board and University of Toronto. p. 126.

Young, F.J. (1988) A review of the pore structure of cement paste and concrete and its influence on permeability, in: D. Whiting and A. Walitt (Eds.), SP-108: Permeability of Concrete, American Concrete Institute, Detroit, Michigan, 1–18.

Wong, H.S.; Pappas, A.M.; Zimmerman, R.W.; Buenfeld, N.R. (2011) Effect of entrained air voids on the microstructure and mass transport properties of concrete. Cem. Concr. Res. 41 [10], 1067–1077. http://dx.doi.org/10.1016/j.cemconres.2011.06.013

Scrivener, K.L.; Gartner, E.M. (1988) Microstructural Gradients in cement paste around aggregate particles, in: S. Mindness, S.P. Shah (Eds.), Bonding in Cementitious Composites, Mat. Res. Soc. Symp. Proc., 114, Cambridge, 77–86.

Scrivener, K.L.; Crumbie, A.K.; Pratt, P.L. (1988) A study of the Interfacial region between cement paste and aggregate in concrete, in: S. Mindness, S.P. Shah (Eds.), Bonding in Cementitious Composites, Mat. Res. Soc. Symp. Proc., 114, Cambridge, 87–88.

Choinska, M.; Khelidj, A.; Chatzigeorgiou, G.; Pijaudier-Cabot, G. (2007) Effects and interactions of temperature and stress-level related damage on permeability of concrete. Cem. Concr. Res. 37 [1], 79–88. http://dx.doi.org/10.1016/j.cemconres.2006.09.015

Valenza II, J.J.; Thomas, J.J. (2012) Permeability and elastic modulus of cement paste as a function of curing temperature. Cem. Concr. Res. 42 [2], 440–446. http://dx.doi.org/10.1016/j.cemconres.2011.11.012

EN 197-1:2011, Cement. Part 1: Composition, specifications and conformity criteria for common cement.

Sanjuán, M.A.; Argiz, C. (2012) The new European standard on specifications for common cements UNE-EN 197-1:2011. Mater. Construcc. 62 [307], 425–430. http://dx.doi.org/10.3989/mc.2012.07711

Sanjuán, M.A.; Muñoz-Martialay, R. (1995) Influence of the age on air permeability of concrete. J. Mater. Sci. 30 [22], 5657–5662. http://dx.doi.org/10.1007/BF00356701

Sanjuán, M.A.; Muñoz-Martialay, R. (1996) Oven-drying as preconditioning method for air permeability test on concrete. Materials Letters 27 [4–5], 263–268. http://dx.doi.org/10.1016/0167-577X(95)00283-9

Neville, A.M.; Brooks, J.J. (2010) Concrete Technology, p. 464, 2nd revised edition, Transatlantic Publishers Group Ltd., London.

Basheer, L.; Basheer, P.A.M.; Long, A.E. (2005) Influence of coarse aggregate on the permeation, durability and the microstructure characteristics of ordinary Portland cement concrete. Construct. Build. Mat. 19 [9], 682–690. http://dx.doi.org/10.1016/j.conbuildmat.2005.02.022

Cabrera, O. A.; Traversa, L. P.; Ortega, N. F. (2011) Effect of crushed sand on mortar and concrete rheology. Mater. Construcc. 61 [303], 401–416. http://dx.doi.org/10.3989/mc.2011.55609

Martín-Morales, M.; Sánchez-Roldán, Z.; Zamorano, M.; Valverde-Palacios, I. (2013) Size grading methods to characterize construction and demolition waste for its use in structural concrete. Mater. Construcc. 63 [310], 235–249. http://dx.doi.org/10.3989/mc.2013.mc.06511

Medina, C.; Juan, A.; Frías, M.; Sánchez de Rojas, M. I.; Morán, J. Mª.; Guerra, M. I. (2011) Characterization of concrete made with recycled aggregate from ceramic sanitary ware. Mater. Construcc. 61 [304], 533–546. http://dx.doi.org/10.3989/mc.2011.59710

Bermejo, E.B.; Moragues, A.; Gálvez, J.C.; Fernández Cánovas, M. (2010) Permeability and pore size distribution in medium strength self-compacting concrete. Mater. Construcc. 60 [299], 37–51.

Bhargava, A.; Banthia, N. (2008) Permeability of concrete with fiber reinforcement and service life predictions". RILEM, Materials and Structures 41 [2], 363–372. http://dx.doi.org/10.1617/s11527-007-9249-6

Lafhaj, Z.; Richard, G.; Kaczmarek, M.; Skoczylas, F. (2007) Experimental determination of intrinsic permeability of limestone and concrete: Comparison between in situ and laboratory results. Building and Environment 42 [8], 3042–3050. http://dx.doi.org/10.1016/j.buildenv.2006.07.039

Pereira, V.M.; Carvalho, E.; Bardella, P.S.; Camarini. G. (2008) Fluid-dynamic analysis of the flow in air permeability measurement of mortars prepared with blast-slag furnace Portland cement. Cerâmica 54 [330] 160–166.

Paulini, P. (2010) A laboratory and on-site test method for air permeability of concrete. 2nd International Symposium on Service Life Design for Infrastructure. 4–6 October 2010, Delft, The Nederlands, pp. 995–1002.

Published

2014-09-30

How to Cite

Argiz, C., Sanjuán, M. A., & Muñoz-Martialay, R. (2014). Effect of the aggregate grading on the concrete air permeability. Materiales De Construcción, 64(315), e026. https://doi.org/10.3989/mc.2014.07213

Issue

Section

Research Articles