Synthesis and mechanical properties of a calcium sulphoaluminate cement made of industrial wastes

Authors

  • M. Gallardo CINVESTAV (Ramos Arizpe, Coah, México)
  • J. M. Almanza CINVESTAV (Ramos Arizpe, Coah, México)
  • D. A. Cortés CINVESTAV (Ramos Arizpe, Coah, México)
  • J. C. Escobedo CINVESTAV (Ramos Arizpe, Coah, México)
  • J. I. Escalante-García CINVESTAV (Ramos Arizpe, Coah, México)

DOI:

https://doi.org/10.3989/mc.2014.04513

Keywords:

Clinker, Calcium Sulpholuminate, Wastes, Ettringite

Abstract


Environmentally-friendly calcium sulphoaluminate clinkers were obtained from a mixture of aluminium dross, fluorgypsum, fly ash and CaCO₃ at temperatures within the range of 1100 to 1400 °C. After the heat treatments Ca₄Al₆O₁₂SO₄ was the main phase. Three different cements were prepared using the clinkers synthesized at 1250, 1350 and 1400 °C; the clinker powders were mixed with 20 wt% of hemihydrate. Cement pastes were prepared using a water/cement ratio (w/c), 0.4 followed by curing at 20 or 40 °C for periods of time ranging from 1 to 28 days. Most of the samples showed high compression strengths 40–47 MPa after 28 days, which were comparable to the strength of Portland cement. Ettringite was the main hydration product and its morphology consisted of acicular and hexagonal plates, which is typical of this phase.

Downloads

Download data is not yet available.

References

1. Ibarra-Castro, M.N.; Almanza-Robles, J.M.; Cortés- Hernández, D.A.; Escobedo-Bocardo, J.C.; Torres-Torres, J. (2009) Development of mullite/zirconia composites from a mixture of aluminum dross and zircon. Ceramics International. 35 [2], 921–924. http://dx.doi.org/10.1016/j.ceramint.2008.03.006

2. Kevorkijan, V.M. (1999) The quality of aluminum dross particles and cost-effective reinforcement for structural aluminum-based composites. Composites Sci. Tech. 59 [11], 1745–1751. http://dx.doi.org/10.1016/S0266-3538(99)00034-2

3. Hashishin, T.; Kodera, Y.; Yamamoto, T.; Ohyanagy. (2004) Synthesis of (Mg, Si) Al₂O₄ spinel from aluminium dross. J. Am. Ceram. Soc. 87 [3], 496–499. http://dx.doi.org/10.1111/j.1551-2916.2004.00496.x

4.Miyamoto, Y.; Kanehira, S.; Radwan, M. (2004) Recycling of industrial and natural wastes to SiAlONs. Refractories Applications and News. 9 [1], 15–16.

5. Yoshimura, H.N.; Abreu, A.P.; Molisani, A.L.; de Camargo, A.C.; Portela, J.C.S.; Narita, N.E. (2008) Evaluation of aluminum dross waste as raw material for refractories. Ceramics International. 34 [3], 581–591. http://dx.doi.org/10.1016/j.ceramint.2006.12.007

6. Ewais, E.M.M.; Khalil, N.M.; Amin, M.S.; Ahmed, Y.M.Z.; Barakat, M.A. (2009) Utilization of aluminum sludge and aluminum slag (dross) for the manufacture of calcium aluminate cement. Ceramics International. 35 [8], 3381–3388. http://dx.doi.org/10.1016/j.ceramint.2009.06.008

7. Murayama, N.; Maekawa, I.; Ushiro, H.; Miyoshi, T.; Shibata, J.; Valix, M. (2012) Synthesis of various layered double hydroxides using aluminum dross generated in aluminum recycling process. Intl. J. Mineral Proc. 110–111, 46–52. http://dx.doi.org/10.1016/j.minpro.2012.03.011

8. Stegemann, J.A. (2002) The Potential role of energy-from-waste air pollution control residues in the industrial ecology of cement. Journal of Sustainable Cement-Based Materials. 2013 [3], 111–127.

9. Damtoft, J.S.; Lukasik, J.; Herfort, D.; Sorrentino, D.; Gartner, E.M. (2008) Sustainable development and climate change initiatives. Cem. Concr. Res. 38 [2], 115–127. http://dx.doi.org/10.1016/j.cemconres.2007.09.008

10. Gartner, E. (2004) Industrially interesting approaches to "low-CO₂" cements. Cem. Concr. Res. 34 [9], 1489–1498. http://dx.doi.org/10.1016/j.cemconres.2004.01.021

11. Humphreys, K.; Mahasenan, M. (2002) Toward a sustainable cement industry. Sub-study 8: climate change, an independent study commissioned to Batelle by word business council for sustainable development. www.wbcsdcement.org

12. Luz, C.A.; Rocha, J.C.; Cheriaf, M.; Pera, J. (2006) Use of sulfoaluminate cement and bottom ash in the solidification/stabilization of galvanic sludge. J. Hazardous Material. B136 [3], 837–845. http://dx.doi.org/10.1016/j.jhazmat.2006.01.020

13. Older, I. (2000) Special Inorganic Cement, Library Binding, Great Britain (2000).

14. El-Didamony, H.; Heikal, M.; Khalil, Kh.A. (2013) Characteristics of cement pastes containing sulphoaluminate and belite prepared from nano-materials. Constr. Build. Mater. 38, 14–21. http://dx.doi.org/10.1016/j.conbuildmat.2012.07.098

15. Janotka, I.; Kraji, L. (1999) An experimental study on the upgrade of sulfoaluminate-belite cement systems by blending with Portland cement. Adv. Cement Research. 11 [1], 35–41. http://dx.doi.org/10.1680/adcr.1999.11.1.35

16. Berger, S.; Coumes, C.C.D.; Bescop, P.L.; Damidot, D. (2011) Influence of a thermal cycle at early age on the hydration of calcium sulphoaluminate cements with variable gypsum contents. Cem. Concr. Res. 41 [2], 149–160. http://dx.doi.org/10.1016/j.cemconres.2010.10.001

17. Glasser, F.P.; Zhang, L. (2001) High-performance cement matrices based on calcium sulfoaluminate-belite compositions. Cem. Concr. Res. 31 [12], 1881–1886. http://dx.doi.org/10.1016/S0008-8846(01)00649-4

18. Zhou, Q.; Milestone, N.B.; Hayes, M. (2006) An alternative to Portland cement for waste encapsulation - the calcium sulfoaluminate cement system. J. Hazardous Materials. 136 [1], 120–129. http://dx.doi.org/10.1016/j.jhazmat.2005.11.038

19. Sánchez-Herrero, M.J.; Fernández-Jiménez, A.; Palomo, A. (2013) C₄A₃S hydration in different alkaline media. Cem. Concr. Res. 46, 41–49. http://dx.doi.org/10.1016/j.cemconres.2013.01.008

20. Qian, G.R.; Shi, J.; Cao, Y.L.; Xu, Y.F.; Chui, P.C. (2008) Properties of MSW fly ash-calcium sulfoaluminate cement J. Hazardous Materials. 152 [1], 196–203. http://dx.doi.org/10.1016/j.jhazmat.2007.06.118

21. Peysson, S.; Pérea, J.; Chabannet, M. (2005) Immobilization of heavy metals by calcium sulfoaluminate cement. Cem. Concr. Res. 35 [12], 2261–2270. http://dx.doi.org/10.1016/j.cemconres.2005.03.015

22. Péra, J.; Ambroise, J.; Chabannet, M. (2004) Valorization of automotive shredder residue in building materials. Cem. Concr. Res. 34 [4], 557–562. http://dx.doi.org/10.1016/j.cemconres.2003.09.004

23. Zhang, L.; Glasser, F.P. (2005) Investigation of the microstructure and carbonation of CS A-based concretes removed from service. Cem. Concr. Res.35 [12], 2252–2260. http://dx.doi.org/10.1016/j.cemconres.2004.08.007

24. Pelletier-Chaignat, L.; Winnefeld, F.; Lothenbach, B.; Saoût, G.L.; Müller, C.J.; Famy, C. (2011) Influence of the calcium sulphate source on the hydration mechanism of Portland cement–calcium sulphoaluminate clinker–calcium sulphate binders. Cem. Concr. Comp. 33 [5], 551–561. http://dx.doi.org/10.1016/j.cemconcomp.2011.03.005

25. Pelletier-Chaignat, L.; Winnefeld, F.; Lothenbach, B.; Müller, C.J. (2012) Beneficial use of limestone filler with calcium sulphoaluminate cement. Constr. Build. Mater. 26 [1], 619–627. http://dx.doi.org/10.1016/j.conbuildmat.2011.06.065

26. García-Maté, M.; Santacruz, I.; De la Torre, Á.G.; León- Reina, L.; Aranda, M.A.G. (2012) Rheological and hydration characterization of calcium sulfoaluminate cement pastes. Cem. Concr. Comp. 34 [5], 684–691. http://dx.doi.org/10.1016/j.cemconcomp.2012.01.008

27. Shoude, W.; Cheng, C.; Lingchao, L.; Xin, C. (2012) Effects of slag and limestone powder on the hydration and hardening process of alite-barium calcium sulphoaluminate cement. Constr. Build. Mater. 35, 227–231. http://dx.doi.org/10.1016/j.conbuildmat.2012.03.004

28. Taylor, H.F.W. (1997). Cement Chemistry, Thomas Telford, Great Britain (1997). http://dx.doi.org/10.1680/cc.25929

29. Mehta, P.K.; Klein, A. (1965) Formation of ettringite by hydration of a system containing an anhydrous calcium sulfoaluminate. J. Am. Ceram. Soc. 48 [8], 435–436. http://dx.doi.org/10.1111/j.1151-2916.1965.tb14786.x

30. Taylor, H.F.W.; Famy, C.; Scrivener, K.L. (2001) Delayed ettringite formation. Cem. Concr. Res. 31 [5], 683–693. http://dx.doi.org/10.1016/S0008-8846(01)00466-5

31. Mehta, P.K. (1967) Expansion characteristics of calcium sulfoaluminate hydrates. J. Am. Ceram. Soc. 50 [4], 204– 208. http://dx.doi.org/10.1111/j.1151-2916.1967.tb15082.x

32. Puertas, F.; Blanco Varela, M.T. (1995) Kinetics of the thermal decomposition of C₄A3S in air. Cem. Concr. Res. 25 [3], 572–580. http://dx.doi.org/10.1016/0008-8846(95)00046-F

33. Wu, K.; Shi, H.; Guo, X. (2011) Utilization of municipal solid waste incineration fly ash for sulfoaluminate cement clinker production. Waste Management. 31 [9–10], 2001– 2008. http://dx.doi.org/10.1016/j.wasman.2011.04.022

34. Li, J.; Ma, H.; Zhao, H. (2007) Preparation of sulphoaluminate-alite composite mineralogical phase cement clinker from high alumina fly ash. Key Engineering Materials. 334–335, 421–424. http://dx.doi.org/10.4028/www.scientific.net/KEM.334-335.421

35. Li, H.; Agrawal, D.K.; Cheng, J.; Silsbee, M.R. (2001) Microwave sintering of sulphoaluminate cement with utility wastes. Cem. Concr. Res. 31 [9], 1257–1261. http://dx.doi.org/10.1016/S0008-8846(01)00579-8

36. Singh, M.; Upadhayay, S.N.; Prasad, P.M. (1997) Preparation of iron rich cements using red mud. Cem. Concr. Res. 27 [7], 1037–1046. http://dx.doi.org/10.1016/S0008-8846(97)00101-4

37. Singh, M.; Kapur, P.C.; Pradip. (2008) Preparation of calcium sulphoaluminate cement using fertiliser plant wastes. J. Hazardous Materials. 157 [1], 106–113. http://dx.doi.org/10.1016/j.jhazmat.2007.12.117

38. ASTM C-204-11. (1995) Standard test methods for fineness of hydraulic cement by air permeability apparatus. West Conshohocken. annual book of ASTM Standards. Section 4. Construction. 04.01. Cement, Lime, Gypsum.

39. ASTM C-191-08. (1995) Standard test methods for time of setting of hydraulic cement by Vicat needle. West Conshohocken. Annual Book of ASTM Standards. Section 4. Construction. 04.01. Cement, Lime, Gypsum.

40. Winnefeld, F.; Lothenbach, B. (2010) Hydration of calcium sulfoaluminate cements -experimental findings and thermodynamic modelling. Cem. Concr. Res. 40 [8], 1239–1247. http://dx.doi.org/10.1016/j.cemconres.2009.08.014

41. Xin, C.; Jun, C.; Lingchao, L.; Futian, L.; Bing, T. (2004) Study on the hydration of Ba-bearing calcium sulphoaluminate in the presence of gypsum. Cem. Concr. Res., 34 [11], 2009– 2013. http://dx.doi.org/10.1016/j.cemconres.2004.02.021

Published

2014-09-30

How to Cite

Gallardo, M., Almanza, J. M., Cortés, D. A., Escobedo, J. C., & Escalante-García, J. I. (2014). Synthesis and mechanical properties of a calcium sulphoaluminate cement made of industrial wastes. Materiales De Construcción, 64(315), e023. https://doi.org/10.3989/mc.2014.04513

Issue

Section

Research Articles