Non-conventional cement-based composites reinforced with vegetable fibers: A review of strategies to improve durability

Authors

  • S. F. Santos State University of São Paulo (UNESP)
  • G. H.D. Tonoli Federal University of Lavras (UFLA)
  • J. E.B. Mejia University of São Paulo (USP)
  • J. Fiorelli University of São Paulo (USP)
  • H. Savastano Jr University of São Paulo (USP)

DOI:

https://doi.org/10.3989/mc.2015.05514

Keywords:

Fiber treatment, Accelerated carbonation, Nanotechnology, Functionally graded materials, Extrusion process

Abstract


The present review shows the state-of-art on the approachs about improving the processing, physical- mechanical performance and durability of non-conventional fiber-cement composites. The objective of this review is to show some of these strategies to mitigate the degradation of the vegetable fibers used as reinforcement in cost-effective and non-conventional fiber-cement and, consequently, to improve their mechanical and durability properties for applications in the housing construction. Beyond the introduction about vegetable fibers, the content of this review is divided in the following sections: (i) surface modification of the fibers; (ii) improving fiber-to-cement interface; (iii) natural pozzolans; (iv) accelerated carbonation; (v) applications of nanoscience; and (vi) principles of functionally graded materials and extrusion process were briefly discussed with focus on future research needs.

Downloads

Download data is not yet available.

References

1. Nyakairu, J.; Kuria S.; Mbogori, S. (2013) Annual Reports 2012. United Nations Human Settlement Programme (UN-HABITAT).

2. Acioly Jr., C.; Horwood, C. (2011) A Practical Guide for Conducting: Housing Profiles - Supporting evidence-based housing policy and reform. United Nations Human Settlements Programme (UN-HABITAT).

3. Mutizwa-Mangiza, N.D.; Arimah, B.C.; Jensen I.; Yemeru, E.A.; Kinyanjui M.K. (2011) Cities and Climate Change: Global Report on Human Settlements by Earthscan Ltd. United Nations Human Settlements Programme (UN-Habitat).

4. Braz, E.C.A.; Kilson, A.R.S.; Speggiorin, E.; Amadeo, S.; Sobral, V.L.A.T.; Alves J.E.D.; Cavenaghi, S. (2011) Demanda habitacional no Brasil. Caixa Econômica Federal–Brasília.

5. Ross K. (2002) Non-traditional housing in the UK–A brief review Published by The Council of Mortgage Lenders and the Building Research Establishment.

6. Ngowi, A.B.; Pienaar, E.; Talukhaba, A.; Mbachu, J. (2005) The globalisation of the construction industry—a review. Building and Environment 40, 135–141. http://dx.doi.org/10.1016/j.buildenv.2004.05.008

7. Ramis, J.; Del Rey, R.; Alba, J.; Godinho, L.; Carbajo, J. (2014) A model for acoustic absorbent materials derived from coconut fiber. Mater. Construcc. 64 [313], 1–7. http://dx.doi.org/10.3989/mc.2014.00513

8. Garcia-Santos, A. (2004) Constructive applications of composite gypsum reinforced with Typha Latifolia fibres. Mater. Construcc. 54 [273], 1–7.

9. Agopyan, V.; Savastano Jr., H.; John, V.M.; Cincotto, M.A. (2005) Developments on vegetable fibre–cement based materials in São Paulo, Brazil: an overview. Cem. Concr. Comp. 27, 527–536. http://dx.doi.org/10.1016/j.cemconcomp.2004.09.004

10. Nexant: (2000) United State Production of Propylene and Its Major Derivatives - Energy and Environmental Profile of the U.S. Chemical Industry, Chapter 3, 22.

11. Agopyan, V.; Cincotto, M.A.; Derolle, A. (1989) Durability of vegetable fibre reinforced materials In: Proceedings of the 11th CIB Triennial Congress - CIB-89; CIB: Paris, France, Theme II [I], 353–361. PMid:2558909

12. Agopyan, V.; John, V.M. (1989) Building panels made with natural fibre reinforced alternative cements In: Fibre reinforced cements and concretes: recent developments; Swamy, R.N.; Barr, B.; Eds.; Elsevier: London, UK, 296–305.

13. Coutts, R.S.P. (1992) From forest to factory to fabrication In: Proceedings of the 4th International Symposium Fibre Reinforced Cement and Concrete; Swamy, R.N.; Ed.; E&FN Spon: London, UK, 31–47.

14. Gram, H.E. (1983) Durability of natural fibres in concrete. Swedish Cement and Concrete Research Institute: Stockholm, Sweden, 1st ed., 83.

15. Jarabo, R.; Monte M.C.; Blanco A.; Negro C.; Tijero J. (2012) Characterisation of agricultural residues used as a source of fibres for fibre-cement production. Industrial Crops and Products, 36, 14–21. http://dx.doi.org/10.1016/j.indcrop.2011.07.029

16. Tomczak, F.; Satyanarayana, K.G.; Sydenstricker, T.H.D. (2007) Studies on lignocellulosic fibers of Brazil: Part III–Morphology and properties of Brazilian curauá fibers. Composites: Part A, 38, 2227–2236. http://dx.doi.org/10.1016/j.compositesa.2007.06.005

17. Satyanarayana, K.G.; Guimarães, J.L.; Wypych, F. (2007) Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. Composites: Part A, 38, 1694–1709. http://dx.doi.org/10.1016/j.compositesa.2007.02.006

18. Tonoli, G.H.D.; Santos, S.F.; Joaquim, A.P.; Savastano Jr., H. (2010) Effect of accelerated carbonation on cementitious roofing tiles reinforced with lignocellulosic fibre. Constr. Build Mater. 24 [2], 193–201. http://dx.doi.org/10.1016/j.conbuildmat.2007.11.018

19. Pacheco-Torgal, F.; Jalali, S. (2011) Nanotechnology: Advantages and drawbacks in the field of construction and building materials. Constr. Build Mater. 25, 582–590. http://dx.doi.org/10.1016/j.conbuildmat.2010.07.009

20. Tan, T.; Santos, S.F.; Savastano, Jr H.; Soboyejo, W.O. (2012) Fracture and resistance-curve behavior in hybrid natural fiber and polypropylene fiber reinforced composites, J. Mat. Sci. 47 [6], 2864–2874. http://dx.doi.org/10.1007/s10853-011-6116-1

21. Mohr, B.J.; Biernacki, J.J.; Kurtis, K.E. (2007) Supplementary cementitious materials for mitigating degradation of kraft pulp fiber-cement composites. Cem. Concr. Res. 37, 1531–1543. http://dx.doi.org/10.1016/j.cemconres.2007.08.001

22. Tonoli, G.H.D.; Santos, S.F.; Savastano Jr., H.; Delvasto, S.; Mejía de Gutiérrez, R.; Lopez de Murphy, M.M. (2011) Effects of natural weathering on microstructure and mineral composition of cementitious roofing tiles reinforced with fique fibre. Cem. Concr. Comp. 33 [2], 225–232. http://dx.doi.org/10.1016/j.cemconcomp.2010.10.013

23. Melo Filho, J.A.; Silva, F.A.; Toledo Filho, R.D. (2013) Degradation kinetics and aging mechanisms on sisal fiber cement composite systems. Cem. Concr. Comp. 40, 30–39. http://dx.doi.org/10.1016/j.cemconcomp.2013.04.003

24. Agopyan, V. (1988) Vegetable fibre reinforced building materials developments in Brazil and other Latin American countries. In: Natural fibre reinforced cement and concrete; Swamy, R.N.; Ed.; Concrete Technology and Design 5; Blackie: Glasgow, UK, 208–242. PMid:3224662

25. Pereira, C.L.; Savastano Jr., H.; Payá, J.J.; Santos, S.F.; Borrachero, M.V.; Monzó, J.M.; Soriano, L. (2013) Use of highly reactive rice husk ash in the production of cement matrix reinforced with green coconut fiber. Industrial Crops and Products, 49, 88–96. http://dx.doi.org/10.1016/j.indcrop.2013.04.038

26. Mármol, G.; Santos, S.F.; Savastano Jr., H.; Borrachero, M.V.; Monzó, J.M.; Payá, J.J. (2013) Mechanical and physical performance of low alkalinity cementitious composites reinforced with recycled cellulosic fibres pulp from cement kraft bags. Industrial Crops and Products, 49, 422–427. http://dx.doi.org/10.1016/j.indcrop.2013.04.051

27. Teixeira, R.S.; Tonoli, G.H.D.; Santos, S.F.; Savastano Jr., H.; Protassio, T.P.; Toro, E.F.; Maldonado, J.; Lahr, F.A.R.; Delvasto, S.A. (2013) Different ageing conditions on cementitious roofing tiles reinforced with alternative vegetable and synthetic fibre. Mat. Struct, 46, 1–14.

28. Jarabo, R.; Monte, M.C.; Fuente, E.; Santos, S.F.; Negro, C. (2013) Corn stalk from agricultural residue used as reinforcement fiber in fiber-cement production. Industrial Crops and Products, 43, 832–839. http://dx.doi.org/10.1016/j.indcrop.2012.08.034

29. Claramunt, J.; Ardanuy, M.; Garcia-Hortal, J.A.; Toledo, R. D. (2011) The Hornification of Vegetable Fibers to Improve the Durability of Cement Mortar Composites. Cem. Concr. Comp. 33, 586–595. http://dx.doi.org/10.1016/j.cemconcomp.2011.03.003

30. Claramunt, J.; Ardanuy, M.; García-Hortal, J.A. (2010) Effect of drying and rewetting cycles on the structure and physicochemical characteristics of softwood fibres for reinforce-ment of cementitious composites. Carbohydrate Polymers, 79, 200–205. http://dx.doi.org/10.1016/j.carbpol.2009.07.057

31. Hoyos, C.G.; Cristia, E.; Vázquez, A. (2013) Effect of cellulose microcrystalline particles on properties of cement based composites. Materials and Design, 51, 810–818. http://dx.doi.org/10.1016/j.matdes.2013.04.060

32. Almeida, A.E.F.S.; Tonoli, G.H. D.; Santos, S.F.; Savastano Jr., H. (2013) Improved durability of vegetable fibre reinforced cement composite subject to accelerated carbonation at early age. Cem. Concr. Comp. 42, 49–58. http://dx.doi.org/10.1016/j.cemconcomp.2013.05.001

33. Higgins, H.G. (1996) Paper physics in Australia. CSIRO - Division of Forestry and Forest Products: Melbourne, Australia.

34. Savastano, Jr., H.; Warden, P.G.; Coutts, R.S.P. (2003) Mechanically pulped sisal as reinforcement in cementitious matrices. Cem. Concr. Comp. 25 [3], 311–319. http://dx.doi.org/10.1016/S0958-9465(02)00055-0

35. Aziz, S.; Sarkanen, K. (1989) Organosolv pulping–a review. Tappi Journal, 72, 169–175.

36. Blanco, A.; Fuente, E.; Alonso, A.; Negro, C. (2010) Optimal use of flocculants on the manufacture of fibre-cement materials by the Hatschek process. Constr. Build Mater. 24 [2], 158–164. http://dx.doi.org/10.1016/j.conbuildmat.2007.06.017

37. Coutts, R.S.P. (2005) A review of Australian research into natural fibre cement composites. Cem. Concr. Comp. 27 [5], 518–526. http://dx.doi.org/10.1016/j.cemconcomp.2004.09.003

38. Tonoli, G.H.D.; Fuente, E.; Monte, C.; Savastano Jr., H.; Rocco Lahr, F.A.; Blanco, A. (2009) Effect of fibre morphology on flocculation of fibre–cement suspensions. Cem. Concr. Res. 39 [11], 1017–1022. http://dx.doi.org/10.1016/j.cemconres.2009.07.010

39. Mohr, B.J.; Nanko, H.; Kurtis, K.E. (2005) Durability of Kraft Pulp Fiber–Cement Composites to Wet/Dry Cycling. Cem. Concr. Comp. e, 27, 435–48.

40. Savastano Jr., H.; Agopyan, V.; Nolasco, A.M.; Pimentel, L.L. (1999) Plant fibre reinforced cement components for roofing. Constr. Build Mater. 13 [8], 433–438. http://dx.doi.org/10.1016/S0950-0618(99)00046-X

41. Joaquim, A.P.; Tonoli, G.H.D.; Santos, S.F.; Savastano Jr., H. (2009) Sisal Organosolv Pulp as Reinforcement for Cement Based Composites. Mat. Res. 12 [3], 305–314. http://dx.doi.org/10.1590/s1516-14392009000300010

42. Correia, V.C.; Curvelo, A.A.S.; Marabezi, K.; Almeida, A. E.F.S.; Savastano Jr., H. (2013) Bamboo cellulosic pulp produced by the ethanol/water process for reinforcement applications. Ciência Florestal. (In press).

43. Correia, V.C.; Santos, S.F.; Mármol, G.; Curveloc; A.A. S.; Savastano Jr., H. (2014) Potential of bamboo organosolv pulp as a reinforcing element in fiber-cement materials. Constr. Build Mater. 72, 65–71. http://dx.doi.org/10.1016/j.conbuildmat.2014.09.005

44. Savastano Jr., H.; Warden, P.G.; Coutts, R.S.P. (2005) Microstructure and mechanical properties of waste fibre–cement composites. Cem. Concr. Comp. 27 [5], 583–592. http://dx.doi.org/10.1016/j.cemconcomp.2004.09.009

45. Savastano Jr., H.; Santos, S.F.; Radonjic, M.; Soboyejo, W.O. (2009) Fracture and fatigue of natural fiber-reinforced cementitious composites. Cem. Concr. Comp. 31 [4], 232–243. http://dx.doi.org/10.1016/j.cemconcomp.2009.02.006

46. Fonseca, A.S.; Mori, F.A.; Tonoli, G.H.D.; Savastano Jr., H.; Ferrari, D.L.; Miranda, I.P.A. (2013) Properties of an Amazonian vegetable fiber as a potential reinforcing material. Industrial Crops and Products, 47, 43–50. http://dx.doi.org/10.1016/j.indcrop.2013.02.033

47. D'Almeida, A.; Toledo Filho, R.; Melo Filho, J. (2010) Cement composites reinforced by short curauá fibers. Revista Matéria, 15 [2], 151–156. http://dx.doi.org/10.1590/s1517-70762010000200010

48. John, V.M.; Agopyan, V.; Prado, T.A. (1998) Durability of cement composites and vegetable fibres for roofing. In: Procc. 3rd Ibero-American Symposium on Roofing for Housing. Cyted/ USP, São Paulo, 51–59.

49. Mohr, B.J.; Biernacki, J.J.; Kurtis, K.E. (2006) Microstructural and chemical effects of wet/dry cycling on pulp fiber-cement composites. Cem. Concr. Res. 36, 1240–1251. http://dx.doi.org/10.1016/j.cemconres.2006.03.020

50. Paavilainen, L. (2001) Fiber structure. In: Handbook of Physical Testing of Paper. Mark, R.E.; Borch, J.; Habeger, C.; Lyne, M.B. Eds., CRC Press.

51. Tonoli, G.H.D.; Almeida, A.E.F.S.; Pereira, M.A.S.; Bassa, A.; Oyakawa, D.; Savastano Jr., H. (2010) Surface properties of Eucalyptus pulp fibres as reinforcement of cement-based composites. Holzforschung, 64, 595–601.

52. Tonoli, G.H.D.; Belgacem, M.N.; Bras, J.; Silva, M.A.P.; Lahr, F.A.R; Savastano Jr., H. (2012) Impact of bleaching pine fibre on the fibre/cement interface. J. Mat. Sci. 47, 4167–4177. http://dx.doi.org/10.1007/s10853-012-6271-z

53. Barra, B.; Bergo, P.; Alves Jr., C.; Savastano Jr., H.; Ghavami, K. (2012) Effects of methane cold plasma in sisal plasma. Key Engineering Materials, 517, 458–468. http://dx.doi.org/10.4028/www.scientific.net/KEM.517.458

54. Bilba, K.; Arsène, M.A. (2008) Silane Treatment of Bagasse Fiber for Reinforcement of Cementitious Composites. Composites: Part A, 39, 1488–1495. http://dx.doi.org/10.1016/j.compositesa.2008.05.013

55. Abdelmouleh, M.; Boufi, S.; Salah, A.; Belgacem, M. N.; Gandini, A. (2002) Interaction of silane coupling agents with cellulose. Langmuir, 18, 3203–3208. http://dx.doi.org/10.1021/la011657g

56. Tonoli G.H.D.; Belgacem M.N.; Siqueira G.; Bras J.; Savastano Jr., H.; Rocco Lahr F.A. (2013) Processing and dimensional changes of cement based composites reinforced with surface-treated cellulose fibres. Cem. Concr. Comp. 37 [3], 68–75. http://dx.doi.org/10.1016/j.cemconcomp.2012.12.004

57. Xu, Y.; Chung, D.D.L. (1999) Improving the workability and strength of silica fume concrete by using silane-treated silica fume. Cem. Concr. Res. 29 [3], 451–453. http://dx.doi.org/10.1016/S0008-8846(98)00228-2

58. European Committee for Standardization, EN 494. (1994). Fiber-cement profiled sheets and fittings for roofing – Products specification and test methods. BSI – British Standards Institution, London, UK.

59. Weise, U. (1998) Hornification - Mechanisms and Terminology. Paperi ja Puu, 80, 110–115.

60. Minor, J. L. (1992) Strength loss in recycled fibers and methods of restoration, Material Research Society Symposium, 266, 215–228. http://dx.doi.org/10.1557/proc-266-215

61. Minor, J.L. (1994) Hornification — Its origin and meaning. Progress in Paper Recycling, 3, 93–95.

62. Kato, K.L.; Cameron, R.E. (1999) A review of the Relationship Between Thermally-Accelerated Ageing of Paper and Hornification. Cellulose, 6, 23–40. http://dx.doi.org/10.1023/A:1009292120151. http://dx.doi.org/10.1023/A:1009292120151

63. Brancato, A.A. (2008) Effect of progressive recycling on cellulose fiber surface properties. Tesis of Doctor Science - School of Chemical and Biomolecular Engineering, Georgia Institute of Technology.

64. Jayme, G. (1944) Milkro-quellungsmessungen an Zellstoffenn. Papier-Fabr/Wochbl Papierfabr, 6, 187–194.

65. Laivins, G. V.; Scallan A. M. (1993) The mechanism of hornification of wood pulps. In: Baker CF (ed) Products of papermaking. Pulp and Paper Fundamental Research Society, Oxford.

66. Bawden, A.D.; Kibblewhite, R. P. (1997) Effects of Multiple Drying Treatments on Kraft Fibre Walls. Journal of Pulp and Paper Science, 23 [7], 340–346.

67. Cˇabalová, I.; Kacˇík, F.; Geffert, A.; Kacˇíková, D. (2011) The Effects of Paper Recycling and its Environmental Impact. Environmental Management in Practice. Edited by Elzbieta Broniewicz, Publisher: InTech, Chap. 17, 329–350.

68. Turrado, J.; Saucedo, A.R.; Ramos, J.; Reynoso, M.L. (2008) Comportamiento de la Fibra de Celulosa Reciclada en el Proceso de Hidratación. Información Tecnológica, 19 [5], 129–136 (in Spanish). http://dx.doi.org/10.4067/S0718-07642008000500014

69. Köhnke, T.; Lund, K.; Brelid, H.; Westman, G. (2010) Kraft pulp hornification: A closer look at the preventive effect gained by glucuronoxylan adsorption. Carbohydrate Polymers, 81 [2], 226–233. http://dx.doi.org/10.1016/j.carbpol.2010.02.023

70. Wang, X.; Maloney, T.C.; Paulapuro, H. (2003) Internal fibrillation in never-dried and once-dried chemical pulps. Appita Journal, 56, 455–459.

71. Fengel, D.; Wegener, G. (1984) Wood - Chemistry, ultrastructure - reactions, Editorial Walter de Gruyters, New York, vol. 1, (1984). .

72. Ferreira, S.R.; Lima, P.R.L.; Silva, F.A.; Toledo Filho, R.D. (2014) The effect of sisal hornification on fiber-matrix bonding characteristics and bending behavior of cement based composites. Key Engineering Materials, 600, 421–432. http://dx.doi.org/10.4028/www.scientific.net/KEM.600.421

42. Britt, K.W. (1970) Handbook of Pulp and Paper Technology, 2nd ed., Van Nostrand Reinhold, New York, USA, (1970).

73. Segal, L.; Creely, J.J.; Martin, A.E.; Conrad, C. (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Textile Research Journal, 29, 786–794. http://dx.doi.org/10.1177/004051755902901003

74. Kuo, C.H.; Lee, C.K. (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydrate Polymer, 77 [1], 41–46. http://dx.doi.org/10.1016/j.carbpol.2008.12.003

76. Clark, J.d'A. (1985) Pulp Technology and Treatment for Paper. Miller Freeman: San Francisco, USA.

77. Coutts, R.S.P. (1984) Autoclaved beaten wood fibre-reinforced cement composites. Composites, 15 [2], 139–143. http://dx.doi.org/10.1016/0010-4361(84)90726-2

78. Coutts, R.S.P. (1987) Fibre-matrix interface in air-cured wood-pulp fibre-cement composites. J. Mat. Sci. Letters, 6, 140–142. http://dx.doi.org/10.1007/BF01728964

79. Tonoli, G.H.D.; Joaquim, A.P.; Arsène, M.A.; Bilba, K.; Savastano Jr., H. (2007) Performance and durability of cement based composites reinforced with refined sisal pulp. Material and Manufacturing Processes, 22 [2], 149–156. http://dx.doi.org/10.1080/10426910601062065

80. Silva, F.A.; Mobasher, B.; Soranakom, C.; Toledo Filho, R.D. (2011) Effect of fiber shape and morphology on interfacial bond and cracking behaviors of sisal fiber cement based composites. Cem. Concr. Comp. 33, 814–823. http://dx.doi.org/10.1016/j.cemconcomp.2011.05.003

81. Bernstein, L.J.; Roy, K.C.; Delhotal, J.; Harnisch, R.; Matsuhashi, L.; Price, K.; Tanaka, E.; Worrell, F.; Yamba, Z.; Fengqi. (2007) Industry. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). [B. Metz, O.R.; Davidson, P.R.; Bosch, R.; Dave, L.A.; Meyer (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, Chap. 7, 448–496.

82. Alexander, L.; Allen, S.; Bindoff, N.L.; Bréon, F.M.; Church, J.; Cubasch, U. et al. (2013) The IPCC Fifth Assessment Report Climate Change 2013: The Physical Science Basis, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

83. Shi, C.; Fernández Jiménez, A.; Palomo, A. (2011) New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 41, 750–763.6.

84. Villar-Coci-a, E.; Valencia-Morales, E.; González-Rodríguez, R.; Hernández-Ruíz, J. (2003) Kinetics of the pozzolanic reaction between lime and sugar cane straw ash by electrical conductivity measurement: A kinetic–diffusive model. Cem. Concr. Res. 33 [4], 517–524. http://dx.doi.org/10.1016/S0008-8846(02)00998-5

85. Villar-Coci-a, E.; Valencia Morales, E.; Santos, S.F.; Savastano Jr., H.; Frías, M. (2011) Pozzolanic behavior of bamboo leaf ash: Characterization and determination of the kinetic parameters. Cem. Concr. Comp. 33 [1], 68–73. http://dx.doi.org/10.1016/j.cemconcomp.2010.09.003

86. Bezerra, E.M.; Joaquim, A.P.; Savastano Jr., H.; John, V.M.; Agopyan, V. (2006) The effect of different mineral additions and synthetic fiber contents on properties of cement based composites. Cem. Concr. Comp. 28 [6], 555–563. http://dx.doi.org/10.1016/j.cemconcomp.2006.02.001

87. Cordeiro, G.C.; Toledo Filho, R.D.; Tavares, L. M.; Fairbairn, E.M.R. (2009) Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem. Concr. Res. 39 [2], 110–115. http://dx.doi.org/10.1016/j.cemconres.2008.11.005

88. Morales, E.V.; Villar-Coci-a, E.; Frías, M.; Santos, S.F.; Savastano Jr., H. (2009) Effects of calcining conditions on the microstructure of sugar cane waste ashes (SCWA): Influence in the pozzolanic activation. Cem. Concr. Comp. 31 [1], 22–28. http://dx.doi.org/10.1016/j.cemconcomp.2008.10.004

89. Frías, M.; Savastano Jr., H.; Villar-Coci-a, E.; Rojas, M.I.S.; Santos, S. (2012) Characterization and properties of blended cement matrices containing activated bamboo leaf wastes. Cem. Concr. Comp. 34 [9], 1019–1023. http://dx.doi.org/10.1016/j.cemconcomp.2012.05.005

90. Jacobsen, V.J.; Rodrigues, M.S.; Telling, M.T.L.; Beraldo, A.L.; Santos, S.F.; Aldrige, L.P.; Bordallo, H.N. (2013) Nano-scale hydrogen-bond network improves the durability of greener cements. Scientific Reports-UK. 3 [2667], 1–6. http://dx.doi.org/10.1038/srep02667

91. Soriano, L.; Monzó, J.; Bonilla, M.; Tashima, M.M.; Payá, J.; Borrachero, M.V. (2013) Effect of pozzolans on the hydration process of Portland cement cured at low temperatures. Cem. Concr. Comp. 42, 41–48. http://dx.doi.org/10.1016/j.cemconcomp.2013.05.007

92. Hosseini, M.M.; Shao, Y.; Whalen, J.K. (2011) Biocement production from silicon-rich plant residues: Perspectives and future potential in Canada. Biosystems engineering, 110, 351–362. http://dx.doi.org/10.1016/j.biosystemseng.2011.09.010

93. Bentur, A.; Akers, S.A.S. (1989) The microstructure and ageing of cellulose fibre reinforced cement composites cured in a normal environment. International Journal Cement Composite Lightweight Concrete, 11, 99–109. http://dx.doi.org/10.1016/0262-5075(89)90120-6

94. Toledo Filho, R.D.; Scrivener, K.; England, G.L.; Ghavami, K. (2000) Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites. Cem. Concr. Comp. 22, 127–43. http://dx.doi.org/10.1016/S0958-9465(99)00039-6

95. Rostami, V.; Shao, Y.; Boyd, A.J.; He, Z. (2012) Microstructure of cement paste subject to early carbonation curing. Cem. Concr. Res. 42, 186– 193. http://dx.doi.org/10.1016/j.cemconres.2011.09.010

96. Pizzol, V.D.; Mendes, L.M.; Frezzatti, L.; Savastano Jr., H.; Tonoli, G.H.D. (2014) Effect of accelerated carbonation on the microstructure and physical properties of hybrid fiber-cement composites. Minerals Engineering, 59, 101–106. http://dx.doi.org/10.1016/j.mineng.2013.11.007

97. Santos, S.F.; Schmidt, R.; Almeida, A.E.F.S.; Tonoli, G. H.D.; Savastano Jr., H. (2014) Supercritical carbonation treatment on extruded fibre-cement reinforced with vegetable fibres. Cem. Concr. Comp. (In press).

98. Shao, Y.; Wan, S.; He, Z. (2011) Manufacturing of cellulose fiber reinforced cement composites using carbon dioxide curing. In Procc: 16th International Conference on Composite Structures - ICCS, Porto, Portugal, 1–2.

99. Gleize, P.J.P. (2011) Nanociência e Nanotecnologia dos Materiais Cimentícios, 1st ed., Edited by Ibracon, Isaia, G. C. (ed), chapter 2.

100. Institute of Research Construction (IRC). (2002) Innovations of Construction. National Council of Research from Canada, 7 [4].

101. Santos, S.F.; Rodrigues, J.A.; Tonoli, G.H.D.; Almeida, A.E.F.S.; Savastano Jr., H. (2014) Effect of colloidal silica on the mechanical properties of fiber–cement reinforced with cellulosic fibers. J. Mat. Sci. 49 [21], 7497–7506. http://dx.doi.org/10.1007/s10853-014-8455-1

102. Zhu, W.; Bartos, P.J.M.; Porro A. (2004) Application of nanotechnology in construction Summary of a state-of-the-art report. Mat. Struct. 37 [9], 649–658. http://dx.doi.org/10.1007/BF02483294

103. Bullard, J.W.; Jennings, H.M.; Livingston, R.A.; Nonat, A.; Scherer, G.W.; Schweitzer, J.S.; Scrivener, K.L.; Thomas, J.J. (2011) Mechanisms of cement hydration. Cem. Concr. Res. 41 [12], 1208–1223. http://dx.doi.org/10.1016/j.cemconres.2010.09.011

104. Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shahm S.P. (2010) Highly dispersed carbon nanotube reinforced cement based materials. Cem. Concr. Res. 40 [7], 1052–1059. http://dx.doi.org/10.1016/j.cemconres.2010.02.015

105. Dias, C.M.R.; Savastano Jr., H.; John, V.M. (2010) Exploring the potential of functionally graded materials concept for the development of fiber cement. Constr. Build. Mater. 24 [2], 140–146. http://dx.doi.org/10.1016/j.conbuildmat.2008.01.017

106. Dias, C.M.R.; Savastano Jr., H.; Taqueda, M.E.S.; John, V.M. (2010) Mixture screening design to choose formulations for functionally graded fiber cements. Materials Science Forum, 631–632, 65–70.

107. Shen, B.; Hubler, M.; Paulino, G.H.; Struble, L.J. (2008) Functionally-graded fiber-reinforced cement composite: Processing, microstructure, and properties. Cem. Concr. Comp. 30 [8], 663–673. http://dx.doi.org/10.1016/j.cemconcomp.2008.02.002

108. Bhuvaneshwari, B.; Sasmalm S.; Baskaran, T.; Iyer, N.R. (2012) Role of Nano Oxides for Improving Cementitious Building Materials. Journal of Civil Engineering and Science, 1 [2], 52–58.

109. Sanchez, F.; Sobolev, K. (2010) Nanotechnology in concrete – A review. Constr. Build. Mater. 24, 2060–2071. http://dx.doi.org/10.1016/j.conbuildmat.2010.03.014. http://dx.doi.org/10.1016/j.conbuildmat.2010.03.014

110. Peyvandi, A.; Sbiam L.A.; Soroushianm P.; Sobolev, K. (2013) Effect of the cementitious paste density on the performance efficiency of carbon nanofiber in concrete nanocomposite. Constr. Build. Mater. 48, 265–269. http://dx.doi.org/10.1016/j.conbuildmat.2013.06.094

111. Nishiyama, Y. (2009) Structure and properties of the cellulose microfibril. Journal of Wood Science, 55 [4], 241–249. http://dx.doi.org/10.1007/s10086-009-1029-1

112. Pääkkö, M.; Ankerfors, M.; Kosonen, H.; Nykänen, A.; Ahola, S.; Osterberg, M.; Ruokolainen, J.; Laine, J.; Larsson, P.T.; Ikkala, O.; Lindström, T. (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 8 [6], 1934–1941. http://dx.doi.org/10.1021/bm061215p PMid:17474776

113. Chinga-Carrasco, G. (2011) Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Research Letters, 6, 417–424. http://dx.doi.org/10.1186/1556-276X-6-417 PMid:21711944 PMCid:PMC3211513

114. Shao, Y.; Marikunte, S.; Shah, S. (1995) Extruded fiber-reinforced composites. Concrete International, 17 [4], 48–52.

115. Shao, Y.; Shah, S. (1997) Mechanical properties of PVA fiber reinforced cement composites fabricated by extrusion processing. ACI Material Journal, 94 [6], 555–564.

116. Shao, Y.; Moras, S.; Ulkem, N.; Kubes, G. (2000) Wood fibre-cement composites by extrusion. Canadian Journal of Civil Engineering, 27, 543–552. http://dx.doi.org/10.1139/l99-093

117. Srinivasan, R.; Deford, D.; Shah, P.S. (1999) The use of extrusion rheometry in the development of extrudate fiber-reinforced cement composites. Concrete Science and Engineering, 1, 26–36.

118. Qian, X.; Zhou, X.; Mu, B.; Li, Z. (2003) Fiber alingment and property direction dependency of FRC extrudate. Cem. Concr. Res. 33 [10], 1575–1581. http://dx.doi.org/10.1016/S0008-8846(03)00108-X

119. Takashima, H.; Miyagay, K.; Hashida, T.; Li, V.C. (2003) A design approach for the mechanical properties of polypropylene discontinuous fiber reinforced cementitious composites by extrusion molding. Engineering Fracture Mechanics, 70 [7–8], 853–870. http://dx.doi.org/10.1016/S0013-7944(02)00154-6

120. Teixeira, R.S.; Tonoli, G.H.D.; Santos, S.F.; Fiorelli, J.; Savastano Jr., H.; Lahr, F.A.R. (2012) Extruded Cement Based Composites Reinforced with Sugar Cane Bagasse Fibres. Key Engineering Materials, 517, 450–457. http://dx.doi.org/10.4028/www.scientific.net/KEM.517.450

121. Horst, G.G. (2002) Extrusion of FRC products: technology and practical aspects. In: Inorganic-Bonded wood and fiber composites materials Conference, Sun Valley, Idaho, USA, 8, 36–46.

122. Kuder, K.G.; Shah, S.P. (2010) Processing of high-performance fiber-reinforced cement-based composites. Constr. Build. Mater. 24 [2], 181–186. http://dx.doi.org/10.1016/j.conbuildmat.2007.06.018

Published

2015-03-30

How to Cite

Santos, S. F., Tonoli, G. H., Mejia, J. E., Fiorelli, J., & Savastano Jr, H. (2015). Non-conventional cement-based composites reinforced with vegetable fibers: A review of strategies to improve durability. Materiales De Construcción, 65(317), e041. https://doi.org/10.3989/mc.2015.05514

Issue

Section

Research Articles