Development of lightweight insulating building materials from perlite wastes

Authors

DOI:

https://doi.org/10.3989/mc.20198.12517

Keywords:

Geopolymerization, Foaming, Inorganic, Lightweight

Abstract


This paper investigates the development of geopolymer foam boards, using perlite wastes as raw material. This type of lightweight materials combines the geopolymerization technology with the foaming process. The mechanism of foaming is based on the generation of a gas that is retained by the geopolymer matrix in the form of individual or interconnected voids. In this study, the inorganic foaming agent is hydrogen peroxide (H2O2), which is added into the initial paste in different quantities by mechanical stirring. The produced porous materials have effective densities between 408–476.5 kg/m3, thermal conductivities between 0.076–0.095 W/m.K and different type of microstructure, depending on the concentration of the activator and the foaming agent content. To assess the porosity and the size distribution of the voids, image processing techniques were applied on digital images of the samples. According to these results, the synthesized lightweight materials exhibit similar or even better thermal properties than the current concrete porous materials.

Downloads

Download data is not yet available.

References

Hammond, G.P.; Jones, C.I. (2006) Inventory of (Embodied) Carbon & Energy (ICE). Department of Mechanical Engineering. International Journal of Research in Engineering and Technology

http://www.perlite.org

http://www.eaaca.org

Svanholm, G. (1990) Pouring into molds with removable walls, stiffening, autoclaving US4902211 A

Holt, E.; Raivio. P. (2004) Use of gasification residues in aerated autoclaved concrete. Cem. Concr. Res. 35, 796–802. https://doi.org/10.1016/j.cemconres.2004.05.005

Jerman, M.; Keppert. M.; Vyborny, J.; Cerny, R. (2013) Hygric, thermal and durability properties of autoclaved aerated concrete. Construc. Build. Mat. 41, 352–35. https://doi.org/10.1016/j.conbuildmat.2012.12.036

http://www.masoncontractors.org/2008/10/16/using-autoclaved-aerated-concrete-correctly

Mostafa, NY. (2005) Influence of air-cooled slag on physicochemical properties of autoclaved aerated concrete. Cem. Concr. Res 35, 1349–57. https://doi.org/10.1016/j.cemconres.2004.10.011

http://keu92.org/uploads/Search%20engineering/Light% 20weight%20concrete.pdf

https://theconstructor.org/concrete/foam-concrete-materials-properties-advantages-production/15921/

Giannopoulou, I.; Dimas, D.; Maragos, I.; Panias, D. (2009) Utilization of metallurgical solid wastes/by-products for development of inorganic polymeric construction materials. Global NEST Journal 11, 127–136

Davidovits, J. (1994) Properties of geopolymer cements. In Proc. 1st international conference on alkaline cements and concretes (KievUkraine), 131–149

Sakkas, K.; Panias, D.; Nomikos, P.; Sofianos, A. (2014b) Potassium based geopolymer for passive fire protection of concrete tunnels linings. Tunnelling and Underground Space Technology 43, 148–56. https://doi.org/10.1016/j.tust.2014.05.003

Kamseu, E.; Nait-Ali, B.; Bignozzi, MC.; Leonelli, C.; Rossignol, S.; Smith, D.S. (2012) Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements. J. Europ. Ceram. Soc. 32, 1593–603. https://doi.org/10.1016/j.jeurceramsoc.2011.12.030

Zhang, Z.; Provis, J.; Reid, A.; Wang, H. (2014) Geopolymer foam concrete: An emerging material for sustainable construction. Construc. Build. Mat. 56, 113–127. https://doi.org/10.1016/j.conbuildmat.2014.01.081

Williams, B. H. (1928) The thermal decomposition of hydrogen peroxide in aqueous solutions. Faraday Soc. 24, 245–255. https://doi.org/10.1039/tf9282400245

Masi, G.; LesVickers, W.; Bignozzi, M-C.; Riessen, A. (2014) A comparison between different foaming methods for the synthesis of lightweight geopolymers. Ceram. Internat. 40 [9] Part A, 13891–13902. https://doi.org/10.1016/j.ceramint.2014.05.108

Wefers K. and Misra C. (1987) Oxides and Hydroxides of Aluminum: Technical Report 19–Revised. Alcoa Laboratories. Pittsburgh, 64–71

Tsaousi, G-M.; Douni, I.; Panias, D. (2016) Characterization of the properties of perlite geopolymer pastes. Mater. Construcc. 66[324]:e102. https://doi.org/10.3989/mc.2016.10415

Koschan, A.; Abidi, M. (2008) Digital color image processing. Wiley–Interscience. https://doi.org/10.1002/9780470230367

Atherton, T. J.; Kerbyson, D.J. (1999) Size invariant circle detection. Image and Vision Computing 17, 795–803. https://doi.org/10.1016/S0262-8856(98)00160-7

Cuevas, E.; Wario, F.; Osuna- Enciso, V.; Zaldivar, D.; Pérez-Cirneros, M. (2012) Fast algorithm for multiple-circle detection on images using Learning Automata. IET Image Processing 6, 1124–1135. https://doi.org/10.1049/iet-ipr.2010.0499

Rad, A.A.; Faez, K.; Qaragozlou, N. (2003) Fast circle detection using gradient pair vectors. In Proc. VIIth Digital Image Computing: Techniques and Applications PMCid:PMC3023437

Yuen, H.K.; Princen, J.; Illingworth, J.; Kittler, J. (1990) Comparative study of Hough transform methods for circle finding. Image and Vision Computing 8, 71–77. https://doi.org/10.1016/0262-8856(90)90059-E

Illingworth, J.; Kittler, J. (1987) The Adaptive Hough Transform. IEEE Transactions on Pattern Analysis and Machine Intelligence 9 [5], 690–698. https://doi.org/10.1109/TPAMI.1987.4767964

Illingworth, J.; Kittler, J. (1988) A survey of the Hough transform. Computer Vision, Graphics and Image Processing 44, 87–116. https://doi.org/10.1016/S0734-189X(88)80033-1

Pan, L.; Chu, W. S.; Saragih, M., J.; Torre, F. (2010) Fast and robust circular object detection with probabilistic pairwise voting (PPV). IEEE Signal Processing Letters 18, 639–642.

Chung, K.L.; Chen, T.C. (2001) An efficient randomized algorithm for detecting circles. Computer Vision and Image Understanding 83, 172–191. https://doi.org/10.1006/cviu.2001.0923

Nambiar, E.K.; Ramamurthy, K. (2007) Air-void characterisation of foam concrete. Cem. Concr. Res 37 [2], 221–230. https://doi.org/10.1016/j.cemconres.2006.10.009

Soutsos, M.; Boyle, A.P.; Vinai, R.; Hadjierakleous, A.; Barnett, S.J. (2016) Factors influencing the compressive strength of fly ash based geopolymers. Construc. Build. Mat. 110 [5], 355–368. https://doi.org/10.1016/j.conbuildmat.2015.11.045

Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. (2015) Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem. Concr. Comp. 62:97–105. https://doi.org/10.1016/j.jallcom.2015.05.131

Ducman, V.; Korat, L. (2016) Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents. Mat. Charac. 113 207–213. https://doi.org/10.1016/j.matchar.2016.01.019

Alengaram, U.J.; Al-Muhit, B.A.; Jumaat, M.Z.; Liu, M.Y.J. (2013) A comparison of the thermal conductivity of oil palm shell foamed concrete with conventional materials. Mat. Des. 51, 522-529. https://doi.org/10.1016/j.matdes.2013.04.078

Song, Y.; Li, B.; Yang, E.H.; Liu, Y.; Ding, T. (2015) Feasibility study on utilization of municipal solid waste incineration bottom ash as aerating agent for the production of autoclaved aerated concrete. Cem. Concr. Comp. 56, 51–58. https://doi.org/10.1016/j.cemconcomp.2014.11.006

Torres, M.L.; García-Ruiz, P.A. (2009) Lightweight pozzolanic materials used in mortars: Evaluation of their influence on density, mechanical strength and water absorption. Cem. Concr. Comp. 31, 114–119. https://doi.org/10.1016/j.cemconcomp.2008.11.003

Yong Jing Lia, M.; Alengaram, U.J.; Santhanam, M.; Jumaat, M.Z.; Hung Mo, K. (2016) Microstructural investigations of palm oil fuel ash and fly ash based binders in lightweight aggregate foamed geopolymer concrete. Construc. Build. Mat. 120:112–122. https://doi.org/10.1016/j.conbuildmat.2016.05.076

Vaou, V.; Panias, D. (2010) Thermal insulating foamy geopolymers from perlite. Minerals Engineering 23, 1146–51. https://doi.org/10.1016/j.mineng.2010.07.015

Tsaousi, G-M.; Douni, I.; Taxiarchou, M.; Panias. D.; Paspaliaris, I. (2014) Development of foamed Inorganic Polymeric Materials based on Perlite. IOP Conference Series: Materials Science and Engineering 123.

Newman, J.; Owens, P. (2013) Properties of lightweight concrete. In: Newman J, Choo RS, editors. Advanced concrete technology Part 3: process. Butterworth-Heinemann Press; 2/7–2/9.

Hamad, A.J. (2014) Materials, Production, Properties and Application of Aerated Lightweight Concrete: Review. Int. J. Mat. Sci. Eng. 2, 152–157. https://doi.org/10.12720/ijmse.2.2.152-157

Published

2019-03-30

How to Cite

Tsaousi, G. M., Profitis, L., Douni, I., Chatzitheodorides, E., & Panias, D. (2019). Development of lightweight insulating building materials from perlite wastes. Materiales De Construcción, 69(333), e175. https://doi.org/10.3989/mc.20198.12517

Issue

Section

Research Articles