Alkali activated materials based on glass waste and slag for thermal and acoustic insulation

Authors

  • S. Stoleriu Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politechnica of Bucharest https://orcid.org/0000-0003-3553-2034
  • I. N. Vlasceanu Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politechnica of Bucharest https://orcid.org/0000-0001-8611-2027
  • C. Dima Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politechnica of Bucharest https://orcid.org/0000-0003-1295-5034
  • A. I. Badanoiu Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politechnica of Bucharest https://orcid.org/0000-0002-9091-3692
  • G. Voicu Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politechnica of Bucharest https://orcid.org/0000-0001-7155-7138

DOI:

https://doi.org/10.3989/mc.2019.08518

Keywords:

Alkali activated materials, Foam, Glass-waste, Thermal and acoustical insulation

Abstract


Porous alkali activated materials (AAM), can be obtained from waste glass powder and slag mixtures by alkali activation with NaOH solution. To obtain an adequate porous microstructure, the hardened AAM pastes were thermally treated at temperatures ranging between 900°C and 1000°C, for 60 or 30 minutes. Due to the intumescent behaviour specific for this type of materials, an important increase of the volume and porosity occurs during the thermal treatment. The partial substitution of waste glass powder with slag, determines the increase of compressive strength assessed before (up to 37 MPa) and after (around 10 MPa) thermal treatment; the increase of slag dosage also determines the increase of the activation temperature of the intumescent process (above 950°C). The high porosity and the specific microstructure (closed pores with various shapes and sizes) of these materials recommend them to be utilised as thermal and acoustical insulation materials.

Downloads

Download data is not yet available.

References

Davidovits, J. (2008) Geopolymer Chemistry and Applications, Saint-Quentin: Institute GÈopolymËre, (2008)

Pacheco-Torgal, F.; Labrincha, J.; Leonelli, C.; Palomo, A.; Chindaprasit, P. (2015) Handbook of Alkali-Activated Cements, Mortars and Concretes, Elsevier. https://doi.org/10.1533/9781782422884.1 PMid:25842101

Torres-Carrasco, M.; Puertas, F. (2017) Alkaline activation of aluminosilicates as an alternative to portland cement: a review, Rom. J. Mater. 47 (1), 3-15.

Cyr, M.; Idir, R.; Poinot, T. (2012) Properties of inorganic polymer (geopolymer) mortars made of glass cullet, J. Mater. Sci. 47, 2782-2797. https://doi.org/10.1007/s10853-011-6107-2

Sun, Z.; Cui, H.; An, H.; Tao, D.; Xu, Y.; Zhai, J.; Li, Q. (2013) Synthesis and thermal behavior of geopolymertype material from waste ceramic, Constr. Build. Mater. 49, 281-287. https://doi.org/10.1016/j.conbuildmat.2013.08.063

Rashidian-Dezfouli, H.; Rangaraju, P. R. (2017) Comparison of strength and durability characteristics of a geopolymer produced from fly ash, ground glass fiber and glass powder, Mater. Construcc. 67 [328], e136. https://doi.org/10.3989/mc.2017.05416

Badanoiu, A.; Al Saadi, T.; Voicu, G. (2015) Synthesis and properties of new materials produced by alkaline activation of glass cullet and red mud, Int. J. Miner. Process. 135, 1-10. https://doi.org/10.1016/j.minpro.2014.12.002

Al Saadi, T.; Badanoiu, A.; Voicu, G.; Stoleriu, S. (2015) Effect of alkaline activator on the main properties of geopolymers based on cullet glass and red mud, Rom. J. Mater. 45, 138-146.

Villaquir·n-Caicedo, M.A.; MejÌa de GutiÈrrez, R.; Gallego, N.C. (2017) A Novel MK-based Geopolymer Composite Activated with Rice Husk Ash and KOH: Performance at High Temperature, Mater. Construcc. 67 [326], e117. https://doi.org/10.3989/mc.2017.02316

Abdollahnejad, Z.; Pacheco-Torgal, F.; FÈlix, T.; Tahri, W.; Barroso Aguiar, J. (2015) Mix design, properties and cost analysis of fly ash-based geopolymer foam, Constr. Build. Mater. 80, 18-30. https://doi.org/10.1016/j.conbuildmat.2015.01.063

Masi, G.; Rickard, W.D.A.; Vickers, L.; Bignozzi, M.C.; van Riessen, A. (2014) A comparison between different foaming methods for the synthesis of light weight geopolymers, Ceram. Int. 40, 13891-13902. https://doi.org/10.1016/j.ceramint.2014.05.108

Guo, Y.; Zhang, Y.; Huang, H.; Meng, K.; Hu, K.; Hu, P.; Wang, X.; Zhang, Z.; Meng, X. (2014) Novel glass ceramic foams, materials based on red mud, Ceram. Int. 40, 6677-6683. https://doi.org/10.1016/j.ceramint.2013.11.128

Chen, X.; Lu, A.; Qu, G. (2013) Preparation and characterization of foam ceramics from red mud and fly ash using sodium silicate as foaming agent, Ceram. Int., 39, 1923-1929. https://doi.org/10.1016/j.ceramint.2012.08.042

Badanoiu, A.; Al Saadi, T.; Stoleriu, S.; Voicu, G. (2015) Preparation and characterization of foamed geopolymers from waste glass and red mud, Constr. Build. Mater. 84, 284-293. https://doi.org/10.1016/j.conbuildmat.2015.03.004

Bai, C.; Ni, T.; Wang Q.; Li, H; Colombo, P. (2018) Porosity, mechanical and insulating properties of geopolymer foams using vegetable oil as the stabilizing agent, J. Eur. Ceram. Soc. 38 [2], 799-805. https://doi.org/10.1016/j.jeurceramsoc.2017.09.021

Al Saadi, T.; Badanoiu, A.I.; Nicoara, A.I.; Stoleriu, S.; Voicu, G. (2017) Synthesis and properties of alkali activated borosilicate inorganic polymers based on waste glass, Constr. Build. Mater. 136, 298-306. https://doi.org/10.1016/j.conbuildmat.2017.01.026

Bai, C.; Colombo, P. (2018) Processing, properties and applications of highly porous geopolymers: A review, Ceram. Int. 44, 16103-16118. https://doi.org/10.1016/j.ceramint.2018.05.219

Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. (2015) Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete, Cem. Concr. Compos. 62, 97-105. https://doi.org/10.1016/j.cemconcomp.2015.03.013

Arenas, C.; Luna-Galiano, Y.; Leiva, C.; Vilches, L.F.; Arroyo, F.; Villegas, R.; Fern·ndez-Pereira, C. (2017) Development of a fly ash-based geopolymeric concrete with construction and demolition wastes as aggregates in acoustic barriers, Constr. Build. Mater. 134, 33-442. https://doi.org/10.1016/j.conbuildmat.2016.12.119

Torres-Carrasco, M.; Palomo, J. G.; Puertas, F. (2014) Sodium silicate solutions from dissolution of glass wastes. Statistical analysis, Mater. Construcc. 64 [314], e014. https://doi.org/10.3989/mc.2014.05213

Puertas, F.; Torres-Carrasco, M. (2014) Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterization, Cem. Concr. Res. 57, 95-104. https://doi.org/10.1016/j.cemconres.2013.12.005

ISO 10545-3:1995, Ceramic tiles - Part 3: Determination of water absorption, apparent porosity, apparent relative density and bulk density.

Barbosa, A. R. J.; Lopes, A. A. S.; Sequeira, S. I. H; Oliveira, J. P.; Davarpanah, A.; Mohseni, F.; Amaral, V. S.; Monteiro, R. C (2016) Effect of processing conditions on the properties of recycled cathode ray tube glass foams, J. Porous Mater. 23, 1663-1669. https://doi.org/10.1007/s10934-016-0227-7

EN 1609 Thermal insulating products for building applications. Determination of short term water absorption by partial immersion

EN 12667 - Thermal performance of building materials and products Determination of thermal resistance by means of guarded hot plate and heat flow meter methods - Products of high and medium thermal resistance

EN 826 - Thermal insulating products for building applications Determination of compression behavior.

EN ISO 10534-1:2002 Acoustics - Determination of sound absorption coefficient and impedance in impedance tubes -- Part 1: Method using standing wave ratio

EN ISO 10534-2:2005 - Acoustics - Determination of sound absorption coefficient and impedance in impedance tubes -Part 2: Transfer-function method

Duxson, P.; Fern·ndez-JimÈnez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. (2007) Geopolymer technology: the current state of the art, J. Mater. Sci. 42, 2917-2933. https://doi.org/10.1007/s10853-006-0637-z

Osborn, E.F.; Muan, A. (1960) Revised and redrawn. Phase equilibrium diagrams of oxide systems , Plate 3 - System MgO-Al2O3-SiO2, American Ceramic Society and the Edward Orton, Jr. Ceramic foundation, (1960)

Winterling H.; Sonntag N., (2011) Rigid Polystirene Foam (EPS, XPS), Kunststoffe International, 10, 18-21.

Strother, E.F. and Turner, W.C. (1990) Thermal Insulation Building Guide, Robert E. Krieger Publishing Company, ISBN-10: 088275985X (1990)

Veiseh S.; Mirmohamadi M.M.; Khodabandeh N.; Hakkaki-Farda A. (2007) Assessment of parameters affecting compressive behavior of mineral wool insulations, Asian J. Civ. Eng. 8[4], 359-373

EN 13167+A1:2015 - Thermal insulation products for buildings - Factory made cellular glass (CG) products Specification

Elkhessaimi, Y.; Tessier-Doyen N.; Smith, A (2017) Effects of microstructure on acoustical insulation of gypsum boards, J. Build. Eng. 14, 24-31. https://doi.org/10.1016/j.jobe.2017.09.011

Ghizdavet, Z.; Stefan B.M.; Nastac, D.; Vasile,O.; Bratu, M. (2016) Sound absorbing materials made by embedding crumb rubber waste in a concrete matrix, Constr. Build. Mater., 124, 755-763. https://doi.org/10.1016/j.conbuildmat.2016.07.145

Published

2019-09-30

How to Cite

Stoleriu, S., Vlasceanu, I. N., Dima, C., Badanoiu, A. I., & Voicu, G. (2019). Alkali activated materials based on glass waste and slag for thermal and acoustic insulation. Materiales De Construcción, 69(335), e194. https://doi.org/10.3989/mc.2019.08518

Issue

Section

Research Articles