Influence of sawdust particle size on fired clay brick properties

Authors

DOI:

https://doi.org/10.3989/mc.2020.04219

Keywords:

Brick, Compressive strength, Thermal analysis, Wood, Pore size distribution

Abstract


This study investigates the effect of adding different size fractions of the same pore forming agent (sawdust) on the material’s compressive strength and heat transfer. The samples were dry pressed and fired at high temperature inside an oven. Phase transformations were evidenced by a combination of differential thermal analysis, thermogravimetry and mass spectrometry (DTA-TGA-MS) and X-ray diffraction (XRD) techniques, in the temperature range of 24-900 ºC. Image analysis (IA) and compression tests were performed to explain the mechanical behaviour of the samples. The thermal conductivity was obtained by using combined photopyroelectric calorimetry (PPE) and lock-in thermography (LIT) techniques. The pressing direction has an impact on the distribution of pores and the heat transfer by conduction.

Downloads

Download data is not yet available.

References

Yüksek, İ. (2015) The evaluation of building materials in terms of energy efficiency. Period. Polytech-Civ. 59 [1], 45-58. https://doi.org/10.3311/PPci.7050

CR6-2013 (2013) Design code for masonry structures. Romania: Monitorul Oficial.

P100-1/2013 (2014) Seismic design code-Part I-Design provisions for buildings. Romania: Monitorul Oficial.

SR EN 1996-2:2006 (2006) Eurocode 6. Design of masonry structures-part 2: design considerations, selection of mate­rials and execution of masonry. Romania: ASRO.

Hassan, A.M.; Moselhy, H.; Abadir, M.F. (2019) The use of bagasse in the preparation of fireclay insulating bricks. Int. J. Appl. Ceram. Tec. 16 [1], 418-425. https://doi.org/10.1111/ijac.13094

Cobirzan, N.; Thalmaier, Gy.; Balog, A.A.; Constantinescu, H.; Timis, I.; Streza, M. (2018) Thermophysical properties of fired clay bricks with waste ceramics and paper pulp as pore-forming agent. J Therm Anal Calorim. 134 [1], 843-851. https://doi.org/10.1007/s10973-018-7092-3

Maillard, P.; Aubert, J.E. (2014) Effects of anisotropy of extruded earth bricks on their hygrothermal properties. Constr. Build. Mater. 63, 56-61. https://doi.org/10.1016/j.conbuildmat.2014.04.001

Aubert, J.E.; Maillard, P.; Morel, J.C.; Al Rafii M. (2016) Towards a simple compressive strength test for earth bricks? Mater. Struct. 49 [5], 1641-1654. https://doi.org/10.1617/s11527-015-0601-y

Korah, L.V.; Nigay, P.M.; Cutard, T.; Nzihou, A.; Thomas, S. (2016) The impact of the particle shape of organic additives on the anisotropy of a clay ceramic and its ther­mal and mechanical properties. Constr. Build. Mater. 125, 654-660. https://doi.org/10.1016/j.conbuildmat.2016.08.094

Balog, A.A; Cobîrzan, N.; Thalmaier, Gy; Constantinescu, H.; Voinea, M.(2019)Psyllium Seeds Used as Pore Forming Agent in Clay Bricks, Procedia Manuf, 32, 242- 247. https://doi.org/10.1016/j.promfg.2019.02.209

Aouba, L.; Coutand, M.; Perrin, B. ; Lemercier, H (2015) Predicting thermal performance of fired clay bricks light­ened by adding oeganic matter: Improvement of brick geometry, J. Build. Phys., 38 [6], 531-547. https://doi.org/10.1177/1744259115571078

Bwayo, E.; Obwoya, S.K. (2014) Coefficient of Thermal Diffusivity of Insulation Brick Developed from Sawdust and Clays. J. Ceram. 2014, 1-6. https://doi.org/10.1155/2014/861726

Demir, I. (2008) Effect of organic residual addition on the technological properties of clay bricks. Waste Manage. 28 [3], 622-627. https://doi.org/10.1016/j.wasman.2007.03.019 PMid:17512183

Kadir, A.A.; Sarani, N.A. (2012) An overview of waste recycling in fired clay bricks. Int. J. of Integrated Engineer. 4 [2], 53-69.

Chemani, B.; Chemani, H. (2012) Effect of adding sawdust on mechanical-physical properties of ceramic bricks to obtain lightweight building material. Int. J. Mech. Aerosp. Industrial Mechatron. Manuf. Eng. 6 [11], 2521-2525.

Sutcu, M.; Akkurt, S. (2009) The use of recycled paper pro­cessing residues in making porous brick with reduced ther­mal conductivity. Ceram. Intern. 35 [7], 2625-2631. https://doi.org/10.1016/j.ceramint.2009.02.027

Bories, C.; Aouba, L.; Vedrenne, E.; Vilarem, G. (2015) Fired clay bricks using agricultural biomass wastes: Study and Characterization. Constr. Build. Mater. 91, 158-163. https://doi.org/10.1016/j.conbuildmat.2015.05.006

Barbieri, L.; Andreola, F.; Lancellotti, I.; Taurino, R. (2013) Management of agricultural biomass wastes: pre­liminary study on characterization and valorization in clay matrix bricks. Waste Manag. 33 [11], 2307-2315. https://doi.org/10.1016/j.wasman.2013.03.014 PMid:23602302

Georgiev, A.; Yoleva, A.; Djambazov, S.; Dimitrov, D.; Ivanova, V. (2018) Еffect of expanded vermiculite and expanded perlite as pore forming additives on the physical properties and thermal conductivity of porous clay bricks. J. Chem. Technol. Metall. 53 [2], 275-280. https://dl.uctm.edu/journal/node/j2018-2/14_17_76_p_ 275_280.pdf.

Demirbaş, A. (1997) Calculation of higher heating val­ues of biomass fuels. Fuel, 76 [5], 431-434. https://doi.org/10.1016/S0016-2361(97)85520-2

Okunade, E.A. (2008) The effect of wood ash and saw­dust admixtures on the engineering properties of a burnt laterite-clay brick. J. Appl. Sci. 8 [6] 1042-1048. https://doi.org/10.3923/jas.2008.1042.1048

Chemani, H.; Chemani, B. (2013) Valorization of wood sawdust in making porous clay brick. Sci. Res. Essays 8 [15] 609-614. https://academicjournals.org/journal/SRE/ article-abstract/58926ED32710.

Bwayo, E.; Obwoya, S.K (2014) Thermal Conductivity of insulation brick developed from sawdust and selected Uganda clays. Int. J. Res. Eng. Technol. 03 [09] 28. https://doi.org/10.15623/ijret.2014.0309043

Ducman, V.; Kopar, T (2007) The influence of different waste additions to clay-product mixtures. Materiali in tehnologije / Mater. Technol. 41 [6] 289-293.

SR EN 772-21:2011 Methods of test for masonry units - Part 21: Determination of water absorption of clay and calcium silicate masonry

SR EN 772-13:2001 Methods of test for masonry units - Part 13: Determination of net and gross dry density of masonry units (except for natural stone)

Cobîrzan, N.; Balog A.-A.; Belan, B.; Borodi, G.; Dadarlat, D.; Streza, M. (2016) Thermophysical properties of masonry units: Accurate characterization by means of photothermal techniques and relationship to porosity and mineral composition. Constr. Build. Mater. 105, 297-306. https://doi.org/10.1016/j.conbuildmat.2015.12.056

García-Ten, J.; Orts, M.J.; Saburit, A.; Silva, G. (2010) Thermal conductivity of traditional ceramics: Part II: Influence of mineralogical composition. Ceram. Int. 36 [7], 2017-2024. https://doi.org/10.1016/j.ceramint.2010.05.013

Dabare, L.; Svinka, R. (2013) Influence of thermal treat­ment and combustible additives on properties of Latvian clay ceramics pellets. Process. Appl. Ceram. 7 [4], 175-180. https://doi.org/10.2298/PAC1304175D

Published

2020-06-30

How to Cite

Thalmaier, G., Cobîrzan, N., Balog, A. A., Constantinescu, H., Streza, M., Nasui, M., & Neamtu, B. V. (2020). Influence of sawdust particle size on fired clay brick properties. Materiales De Construcción, 70(338), e215. https://doi.org/10.3989/mc.2020.04219

Issue

Section

Research Articles